# Kinesthetic modality components for the W3C Multimodal Architecture.

Florian Metze, Thomas Ziem, and Ingmar Kliche

Workshop on W3C's Multimodal Architecture and Interfaces November 16-17, 2007, Fujisawa, Japan.



### Agenda.

### ■ Introduction, Use cases, Motivation

- Current implementations of kinesthetic input modality components
- Client vs. server side interaction management
- Integration into the W3C Multimodal Architecture
- A kinesthetic output component
- Conclusion



## Kinesthetic modality components. Introduction of kinesthetic input.

- Kinesthetic input for operating mobile devices, for example:
  - Twiddler (text input)
  - Nintendo Wii
  - Samsung, Android OS, others
- Two approaches
  - Accelerometers sensing physical movements (spatial translation)
  - Optical input sensors (cameras)
    - Rotation and translation
    - □ No extra hardware cost
- Main benefit: single-handed operation
  - Gaming
  - List navigation & selection
  - Mouse replacement for mobile devices
  - Short-cut gestures
  - Context recognition
- Computation needed: translate measurements into commands and feedback







## Kinesthetic modality components. Use cases for kinesthetic input.

- Two main kinds of interaction/ feedback
  - Continuous (i.e. scrolling)
  - Discrete (i.e. list navigation)
- Push-to-activate?
- Relative or absolute positioning?
- Natural first candidate for integration in W3C framework/ standards:
  - Discrete interaction
  - Relative positioning
  - Indirect interaction
  - Selection in lists, menus
  - One-hand control of menu-based interfaces on mobile devices
  - Add shortcuts for frequently used functions





## Kinesthetic modality components. Application using kinesthetic input.

#### **Example scenario 'Mediascout'**

- While on the move, get recommendations from tonight's IPTV program.
- Multi-modal application for ease of use exploring different device capabilities.



#### **Current implementation approach**

- HTML/JavaScript based GUI component
- ActiveX control accesses device hardware (inertial sensors or camera pictures)
- ActiveX control implements signal processing (either processing of inertial sensors signal or camera pictures), generates events for predefined motion patterns (up, down, left, right)
- ActiveX control integrated into Windows Mobile Pocket Internet Explorer
- JavaScript interacts with ActiveX control
- JavaScript based interaction management (client side)

#### **Open issues**

- Limitation to Microsoft Windows Mobile devices
- Motion patterns are currently burned into the ActiveX control, a pattern description language might be useful, comparably to SRGS for speech recognition
- Could InkML help?





#### The challenge: server side interaction management

- Server side interaction management provides more flexible and powerful functionalities (e.g. semantic interaction management)
- Drawback: Events need to be sent to the server side interaction management
- W3C Multimodal Framework defines a Modality component API (MMI lifecycle events)
- Open issues:
  - Latency of event transport introduces delay of system reactions.
- Event at ActiveX control, handled within JavaScript
- Event sent to server side interaction management, e.g. using AJAX
- 3 Calculation of system response
- 4 Transmission of system response to client
- 5 Execution of system response





#### Approaches for distribution of interaction management

- Client side interaction management:
  - Advantage: fast
  - Disadvantage: allows less complexity, control logic platform dependent
- Distributed interaction management
  - Advantage: provides potentially more functionality for interaction management
  - Disadvantage: more effort and complexity for synchronization of server and client side interaction management
- Server side interaction management:
  - Advantage: powerful interaction management, centralized and client platform independent control logic
  - Disadvantage: Latency, Online connectivity required

#### Approaches for distribution of signal processing

- Current approach: client side signal processing
- distributed?
- server side ?
- Drawback: signals need to be transferred to the server, much bandwidth required (e.g. for images).



#### **W3C Multimodal Architecture**





#### Integration into the W3C Multimodal Architecture

- SCXML based interaction manager
- Server side interaction management
- Kinesthetic separate modality component or combination of kinesthetic and GUI modality component?
- MMI- Lifecycle events to be used:
  - Data ???
  - Notify ???

```
<mmi:Notify
  source="someURI"
  context="someURI" >
  <mmi:data>
        <emma:interpretation
            emma:confidence="0.53"
            emma:mode="motion" >
            <pattern>up</pattern>
        </emma:interpretation>
        </mmi:data>
</mmi:Notify>
```





### Kinesthetic modality components. Force feedback.

#### Kinesthetic feedback

- Mobile phones provide vibrations as notification functionality
- A prototype of a kinesthetic output components has been implemented (using vibration functionality of mobile phones)
  - use case: feedback for recognition success on kinesthetic input
- Integration with W3C Multimodal Framework:
  - lifecycle event: Data or Notify

- 1 Event at ActiveX control, handled within JavaScript
- Event sent to server side interaction management, e.g. using AJAX
- 3 Calculation of system response
- 4 Transmission of system response to client
- 5 Execution of system response





## Kinesthetic modality components. Open issues.

- Latency and real-time requirements for kinesthetic control
  - Server-side interaction management
  - Feasibility of distributed multi-modal framework
- Description language for pattern matching rules
  - Describing motion input
  - Comparable to grammars for speech recognition
- Pattern and event space cardinality
  - Digital/ discrete
  - Analog/ continuous
- Dependency on type of sensor
- Integration of kinesthetic feedback
- Initialization/ Normalization
- Activation (push-to-move)



## Kinesthetic modality components. Conclusion.

- Presented kinesthetic input in multi-modal framework
  - Many isolated efforts exist
  - Tied to specific applications
  - Proprietary integration of client device functionalities
- Advantages of kinesthetic input are plenty
  - One-hand operation
  - Eyes-free
- Development of standards seems desirable
  - Need to identify a more complete set of needs
  - Identify synergies with existing frameworks
- But: How to ease implementation or integration of client functionalities into web browsers?
  - Embedded ASR, TTS
  - Kinesthetic sensors
  - others



## Literature and References. Used in this presentation.

- [Ballagas] The smart phone: a ubiquitous input device; Ballagas, R. Borchers, J. Rohs, M. Sheridan, J.G.; Pervasive Computing, IEEE; Vol. 5, Issue 1; Jan.-March 2006
- [Cho] Dynamics of tilt-based browsing on mobile devices; Sung-Jung Cho, Changkyu Choi, Younghoon Sung, Kwanghyeon Lee; Yeun-Bae Kim; Roderick Murray-Smith; CHI '07 extended abstracts on Human factors in computing systems; ACM, 2007; San Jose, CA, USA