
Web Services Policy 1.5 - Primer

W3C Working Draft 05 June 2007
This version:

http://www.w3.org/TR/2007/WD-ws-policy-primer-20070605
Latest version:

http://www.w3.org/TR/ws-policy-primer
Previous version:

http://www.w3.org/TR/2007/WD-ws-policy-primer-20070330
Editors:

Asir S Vedamuthu, Microsoft Corporation
David Orchard, BEA Systems, Inc.
Frederick Hirsch, Nokia
Maryann Hondo, IBM Corporation
Prasad Yendluri, webMethods, Inc.
Toufic Boubez, Layer 7 Technologies
Ümit Yalçinalp, SAP AG.

This document is also available in these non-normative formats: PDF, PostScript, XML, and plain text.

Copyright © 2007 World Wide Web ConsortiumW3C® (Massachusetts Institute of TechnologyMIT,
European Research Consortium for Informatics and MathematicsERCIM, Keio), All Rights Reserved.
W3C liability, trademark and document use rules apply.

Abstract
Web Services Policy 1.5 - Primer is an introductory description of the Web Services Policy language. This
document describes the policy language features using numerous examples. The associated Web Services
Policy 1.5 - Framework and Web Services Policy 1.5 - Attachment specifications provide the complete
normative description of the Web Services Policy language.

Status of this Document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical report
can be found in the W3C technical reports index at http://www.w3.org/TR/.

1

Table of Contents

http://www.w3.org/
http://www.w3.org/TR/2007/WD-ws-policy-primer-20070605
http://www.w3.org/TR/ws-policy-primer
http://www.w3.org/TR/2007/WD-ws-policy-primer-20070330
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/TR/

This is an updated Working Draft of the Web Services Policy 1.5 - Primer specification. This Working
Draft was produced by the members of the Web Services Policy Working Group, which is part of the
W3C Web Services Activity. The Working Group has not yet decided if it will advance this Working
Draft to Recommendation Status. Several issues have already been filed on this document and are
recorded in Bugzilla. The Working Group has not yet considered all of these issues.

A list of changes in this version of the document [p.45] and a diff-marked version against the previous
version of this document are available. Changes in this version of the document encompass editorial
changes to align with the OASIS WS-SecurityPolicy and the W3C WS-Addressing Metadata specifica-
tion.

Note that this Working Draft does not necessarily represent a consensus of the Working Group. Discus-
sion of this document takes place on the public public-ws-policy@w3.org mailing list (public archive) and
within Bugzilla. Comments on this specification should be made following the Description for Issues of
the Working Group.

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft
document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to
cite this document as other than work in progress.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C
maintains a public list of any patent disclosures made in connection with the deliverables of the group; that
page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent
which the individual believes contains Essential Claim(s) must disclose the information in accordance
with section 6 of the W3C Patent Policy.

Table of Contents
1. Introduction [p.3]
2. Basic Concepts: Policy Expression [p.4]
 2.1 Web Services Policy [p.4]
 2.2 Simple Message [p.5]
 2.3 Secure Message [p.6]
 2.4 Other Assertions [p.7]
 2.5 Combining Policy Assertions [p.8]
 2.6 Optional Policy Assertion [p.9]
 2.7 Ignorable Policy Expressions [p.11]
 2.8 Marking Assertions both Optional and Ignorable [p.11]
 2.9 Nested Policy Expressions [p.12]
 2.10 Referencing Policy Expressions [p.13]
 2.11 Attaching Policy Expressions to WSDL [p.15]
 2.12 Policy Automates Web Services Interaction [p.17]
3. Advanced Concepts: Policy Expression [p.17]
 3.1 Policy Expression [p.17]
 3.2 Normal Form for Policy Expressions [p.18]
 3.3 Policy Data Model [p.20]
 3.4 Compatible Policies [p.24]

2

Table of Contents

http://www.w3.org/2002/ws/policy/
http://www.w3.org/2002/ws/Activity
http://www.w3.org/Bugs/Public/
http://lists.w3.org/Archives/Public/public-ws-policy/
http://www.w3.org/Bugs/Public/
http://www.w3.org/2002/ws/policy/#issues
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/39293/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

 3.4.1 Strict and Lax Policy Intersection [p.25]
 3.5 Attaching Policy Expressions to WSDL [p.26]
 3.6 Policy Retrieval [p.29]
 3.7 Combine Policies [p.29]
 3.8 Extensibility and Versioning [p.31]
 3.8.1 Policy Language [p.31]
 3.8.2 Policy Expressions [p.31]
 3.8.3 Use of Ignorable attribute and an alternative Versioning Scenario [p.32]
 3.8.4 Use of Ignorable and Optional attributes [p.33]
 3.9 Parts of a Policy Assertion [p.35]
4. Versioning Policy Language [p.36]
 4.1 Policy Framework [p.37]
 4.2 Policy Attachment [p.40]
5. Conclusion [p.41]

Appendices

A. Security Considerations [p.41]
B. XML Namespaces [p.41]
C. References [p.42]
D. Acknowledgements [p.45] (Non-Normative)
E. Changes in this Version of the Document [p.45] (Non-Normative)
F. Web Services Policy 1.5 - Primer Change Log [p.46] (Non-Normative)

1. Introduction
This document, Web Services Policy 1.5 - Primer, provides an introductory description of the Web
Services Policy language and should be read alongside the formal descriptions contained in the WS-Policy
and WS-PolicyAttachment specifications.

This document is:

for policy expression authors who need to understand the syntax of the language and understand how
to build consistent policy expressions,

for policy implementers whose software modules read and write policy expressions and

for policy assertion authors who need to know the features of the language and understand the
requirements for describing policy assertions.

This document assumes a basic understanding of XML 1.0, Namespaces in XML, WSDL 1.1 and SOAP.

Each major section of this document introduces the features of the policy language and describes those
features in the context of concrete examples.

3

1. Introduction

2. Basic Concepts: Policy Expression [p.4] covers the basic mechanisms of Web Services Policy. It
describes how to declare and combine capabilities and requirements of a Web service as policy expres-
sions, attach policy expressions to WSDL constructs such as endpoint and message, and re-use policy
expressions.

3. Advanced Concepts: Policy Expression [p.17] this is the advanced section that provides more
in-depth materials for policy implementers and assertion authors. It explains the basics of normalizing
policy expressions, merging policies, determining the compatibility (intersection) of policies, the policy
data model, the policy expression and the extensibility points built into the Web Services Policy language.

4. Versioning Policy Language [p.36] provides examples and best practices on versioning of the policy
language itself, mostly intended for policy implementers.

The Web Services Policy 1.5 - Guidelines for Policy Assertion Authors specification provides guidelines
for designing policy assertions and enumerates the minimum requirements for describing policy assertions
in specifications.

This is a non-normative document and does not provide a definitive specification of the Web Services
Policy language. B. XML Namespaces [p.41] lists all the namespaces that are used in this document.
(XML elements without a namespace prefix are from the Web Services Policy XML Namespace.)

2. Basic Concepts: Policy Expression

2.1 Web Services Policy

Web services are being successfully used for interoperable solutions across various industries. One of the
key reasons for interest and investment in Web services is that they are well-suited to enable
service-oriented systems. XML-based technologies such as SOAP, XML Schema and WSDL provide a
broadly-adopted foundation on which to build interoperable Web services. The WS-Policy and WS-Poli-
cyAttachment specifications extend this foundation and offer mechanisms to represent the capabilities and
requirements of Web services as Policies.

Service metadata is an expression of the visible aspects of a Web service, and consists of a mixture of
machine- and human-readable languages. Machine-readable languages enable tooling. For example, tools
that consume service metadata can automatically generate client code to call the service. Service metadata
can describe different parts of a Web service and thus enable different levels of tooling support.

First, service metadata can describe the format of the payloads that a Web service sends and receives.
Tools can use this metadata to automatically generate and validate data sent to and from a Web service.
The XML Schema language is frequently used to describe the message interchange format within the
SOAP message construct, i.e. to represent SOAP Body children and SOAP Header blocks.

Second, service metadata can describe the ‘how’ and ‘where’ a Web service exchanges messages, i.e. how
to represent the concrete message format, what headers are used, the transmission protocol, the message
exchange pattern and the list of available endpoints. The Web Services Description Language is currently
the most common language for describing the ‘how’ and ‘where’ a Web service exchanges messages.
WSDL has extensibility points that can be used to expand on the metadata for a Web service.

4

2. Basic Concepts: Policy Expression

Third, service metadata can describe the capabilities and requirements of a Web service, i.e. representing
whether and how a message must be secured, whether and how a message must be delivered reliably,
whether a message must flow a transaction, etc. Exposing this class of metadata about the capabilities and
requirements of a Web service enables tools to generate code modules for engaging these behaviors. Tools
can use this metadata to check the compatibility of requesters and providers. Web Services Policy can be
used to represent the capabilities and requirements of a Web service.

Web Services Policy is a machine-readable language for representing the capabilities and requirements of
a Web service. These are called ‘policies’. Web Services Policy offers mechanisms to represent consistent
combinations of capabilities and requirements, to determine the compatibility of policies, to name and
reference policies and to associate policies with Web service metadata constructs such as service, endpoint
and operation. Web Services Policy is a simple language that has four elements - Policy, All ,
ExactlyOne and PolicyReference - and one attribute - wsp:Optional .

2.2 Simple Message

Let us start by considering a SOAP Message in the example below.

Example 2-1. SOAP Message

<soap:Envelope>
 <soap:Header>
 <wsa:To>http://x.example.com/realquote</wsa:To>
 <wsa:Action>http://x.example.com/GetRealQuote</wsa:Action>
 </soap:Header>
 <soap:Body> …</soap:Body>
</soap:Envelope>

This message uses message addressing headers. The wsa:To and wsa:Action header blocks identify
the destination and the semantics implied by this message respectively. (The prefix wsa is used here to
denote the Web Services Addressing XML Namespace. B. XML Namespaces [p.41] lists all the names-
paces and prefixes that are used in this document.)

Let us look at a fictitious scenario used in this document to illustrate the features of the policy language. A
Web service developer is building a client application that retrieves real time stock quote information from
Company-X, Ltd. Company-X supplies real time data using Web services. The developer has
Company-X’s advertised WSDL description of these Web services. Company-X requires the use of
addressing headers for messaging. Just the WSDL description is not sufficient for the developer to enable
the interaction between her client and these Web services. WSDL constructs do not indicate requirements
such as the use of addressing.

(The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, email address, logo, person, places, or events is intended or should be inferred.)

Providers have the option to convey requirements, such as the use of addressing, through word-of-mouth
and documentation – as they always have. To interact successfully with this service, the developer may
have to read any related documentation, call someone at Company-X to understand the service metadata,
or look at sample SOAP messages and infer such requirements or behaviors.

5

2.2 Simple Message

Web Services Policy is a machine-readable language for representing these Web service capabilities and
requirements as policies. Policy makes it possible for providers to represent such capabilities and require-
ments in a machine-readable form. For example, Company-X may augment the service WSDL description
with a policy that requires the use of addressing. The client application developer can use a policy-aware
client that understands this policy and engages addressing automatically.

How does Company-X use policy to represent the use of addressing? The example below illustrates a
policy expression that requires the use of addressing.

Example 2-2. Policy Expression

<Policy>
 <wsam:Addressing> …</wsam:Addressing>
</Policy>

The policy expression in the above example consists of a Policy main element and a child element
wsam:Addressing. Child elements of the Policy element are policy assertions. Company-X attaches the
above policy expression to a WSDL binding description.

Example 2-3. Policy Expression Attached to Binding

<wsdl:binding name="AddressingBinding" type="tns:RealTimeDataInterface" >
 <Policy>
 <wsam:Addressing> …</wsam:Addressing>
 </Policy>
 …
</wsdl:binding>

Policies can also be attached to WSDL using references (See 2.10 Referencing Policy Expressions [p.13]
.)

The wsam:Addressing element is a policy assertion. (The prefix wsam is used here to denote the Web
Services Addressing – Metadata XML Namespace.) This assertion identifies the use of Web Services
Addressing information headers. A policy-aware client can recognize this policy assertion, engage
addressing automatically, and use headers such as wsa:To and wsa:Action in SOAP Envelopes.

It is important to understand the association between the SOAP message and policy expression in the
above example. As you can see by careful examination of the message, there is no reference to any policy
expression. Just as WSDL does not require a message to reference WSDL constructs (such as port,
binding and portType), Web Services Policy does not require a message to reference a policy expression
though the policy expression describes the message.

2.3 Secure Message

In addition to requiring the use of addressing, Company-X requires the use of transport-level security for
protecting messages.

6

2.3 Secure Message

Example 2-4. Secure Message

<soap:Envelope>
 <soap:Header>
 <wss:Security soap:mustUnderstand="1" >
 <wsu:Timestamp wsu:Id="_0">
 <wsu:Created>2006-01-19T02:49:53.914Z</u:Created>
 <wsu:Expires>2006-01-19T02:54:53.914Z</u:Expires>
 </wsu:Timestamp>
 </wss:Security>
 <wsa:To>http://x.example.com/quote</wsa:To>
 <wsa:Action>http://x.example.com/GetRealQuote</wsa:Action>
 </soap:Header>
 <soap:Body> …</soap:Body>
</soap:Envelope>

The SOAP message in the example above includes security timestamps that express creation and expira-
tion times of this message. Company-X requires the use of security timestamps and transport-level secu-
rity - such as HTTPS – for protecting messages. (The prefixes wss and wsu are used here to denote the
Web Services Security and Utility namespaces.)

Similar to the use of addressing, Company-X indicates the use of transport-level security using a policy
expression. The example below illustrates a policy expression that requires the use of addressing and
transport-level security for securing messages.

Example 2-5. Addressing and Security Policy Expression

<Policy>
 <wsam:Addressing> …</wsam:Addressing>
 <sp:TransportBinding> …</sp:TransportBinding>
</Policy>

The sp:TransportBinding element is a policy assertion. (The prefix sp is used here to denote the
Web Services Security Policy XML Namespace.) This assertion identifies the use of transport-level secu-
rity – such as HTTPS - for protecting messages. Policy-aware clients can recognize this policy assertion,
engage transport-level security for protecting messages and include security timestamps in SOAP
Envelopes.

The client application developer can use a policy-aware client that recognizes this policy expression and
engages both addressing and transport-level security automatically.

For the moment, let us set aside the contents of the sp:TransportBinding policy assertion and
consider its details in a later section.

2.4 Other Assertions

Thus far, we explored how Company-X uses policy expressions and assertions for representing behaviors
that must be engaged for a Web service interaction. What is a policy assertion? What role does it play? In
brief, a policy assertion is a piece of service metadata, and it identifies a domain (such as messaging, secu-
rity, reliability and transaction) specific behavior that is a requirement. Company-X uses a policy assertion
to convey a condition under which they offer a Web service. A policy-aware client can recognize policy

7

2.4 Other Assertions

assertions and engage these behaviors automatically.

Providers, like Company-X, have the option to combine behaviors for an interaction from domains such as
messaging, security, reliability and transactions. Using policy assertions, providers can represent these
behaviors in a machine-readable form. Web service developers can use policy-aware clients that recognize
these assertions and engage these behaviors automatically.

Who defines policy assertions? Where are they? Policy assertions are defined by Web services developers,
product designers, protocol authors and users. Like XML Schema libraries, policy assertions are a growing
collection. Several WS-* protocol specifications and applications define policy assertions:

Web Services Security Policy [WS-SecurityPolicy [p.44]]

Web Services Reliable Messaging Policy [Web Services Reliable Messaging Policy [p.44]]

Web Services Atomic Transaction [Web Services Atomic Transaction [p.43]]

Web Services Business Activity Framework [Web Services Business Activity Framework [p.43]]

Devices Profile for Web Services [Devices Profile for Web Services [p.43]]

…

2.5 Combining Policy Assertions

Policy assertions can be combined in different ways to express consistent combinations of behaviors
(capabilities and requirements). There are three policy operators for combining policy assertions:
Policy , All and ExactlyOne (the Policy operator is a synonym for All).

Let us consider the All operator first. The policy expression in the example below requires the use of
addressing and transport-level security. There are two policy assertions. These assertions are combined
using the All operator. Combining policy assertions using the Policy or All operator means that all
the behaviors represented by these assertions are required.

Example 2-6. Addressing and Security Policy Expression

<All>
 <wsam:Addressing> …</wsam:Addressing>
 <sp:TransportBinding> …</sp:TransportBinding>
</All>

In addition to requiring the use of addressing, Company-X allows either the use of transport- or
message-level security for protecting messages. Web Services Policy language can indicate this choice of
behaviors in a machine-readable form. To indicate the use of message-level security for protecting
messages, Company-X uses the sp:AsymmetricBinding policy assertion (see the example below).

Example 2-7. Asymmetric Binding Security Policy Assertion

8

2.5 Combining Policy Assertions

<sp:AsymmetricBinding> …</sp:AsymmetricBinding>

The sp:AsymmetricBinding element is a policy assertion. (The prefix sp is used here to denote the
Web Services Security Policy namespace.) This assertion identifies the use of message-level security –
such as WS-Security 1.0 - for protecting messages. Policy-aware clients can recognize this policy asser-
tion, engage message-level security for protecting messages and use headers such as wss:Security in
SOAP Envelopes.

To allow the use of either transport- or message-level security, Company-X uses the ExactlyOne policy
operator. Policy assertions combined using the ExactlyOne operator requires exactly one of the behav-
iors represented by the assertions. The policy expression in the example below requires the use of either
transport- or message-level security for protecting messages.

Example 2-8. Transport- or Message-Level Security Policy Expression

<ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding>
</ExactlyOne>

Company-X requires the use of addressing and requires the use of either transport- or message-level secu-
rity for protecting messages. They represent this combination using the All and ExactlyOne operators.
Policy operators can be mixed to represent different combinations of behaviors (capabilities and require-
ments). The policy expression in the example below requires the use of addressing and one of transport- or
message-level security for protecting messages.

Example 2-9. Addressing and Transport- OR Message-Level Security Policy Expression

<All>
 <wsam:Addressing> …</wsam:Addressing>
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding>
 </ExactlyOne>
</All>

Using this policy expression, Company-X gives the choice of mechanisms for protecting messages to
clients (or requesters).

2.6 Optional Policy Assertion

Through a customer survey program, Company-X learns that a significant number of their customers
prefer to use the Optimized MIME Serialization (as defined in the MTOM specification) for sending and
receiving messages. Company-X adds optional support for the Optimized MIME Serialization and
expresses this optional behavior in a machine-readable form.

To indicate the use of optimization using the Optimized MIME Serialization, Company-X uses the
mtom:OptimizedMimeSerialization policy assertion (see the example below).

9

2.6 Optional Policy Assertion

Example 2-10. Optimized MIME Serialization Policy Assertion

<mtom:OptimizedMimeSerialization />

The mtom:OptimizedMimeSerialization element is a policy assertion. (The prefix mtom is used
here to denote the Optimized MIME Serialization Policy namespace.) This assertion identifies the use of
MIME Multipart/Related serialization as required for request and response messages. Policy-aware clients
can recognize this policy assertion and engage Optimized MIME Serialization for messages. The seman-
tics of this assertion are reflected in messages: they use an optimized wire format (MIME Multi-
part/Related serialization).

Like Company-X’s optional support for Optimized MIME Serialization, there are behaviors that may be
engaged (in contrast to must be engaged) for a Web service interaction. A service provider will not fault if
these behaviors are not engaged. Policy assertions can be marked optional to represent behaviors that may
be engaged for an interaction. A policy assertion is marked as optional using the wsp:Optional
attribute. Optional assertions represent the capabilities of the service provider as opposed to the require-
ments of the service provider.

In the example below, the Optimized MIME Serialization policy assertion is marked optional. This policy
expression allows the use of optimization and requires the use of addressing and one of transport- or
message-level security. If a client sends an optimized (MTOM) message, this will be indicated by charac-
teristics associated by using such an optimized message, including a wire format that is a Multi-
part/Related message and a content-type header of "application/xop+xml" for the outer package. In this
case, the response message will also be optimized, also having a Multipart/Related message and
content-type header of "application/xop+xml". Note that when optimized messages are used, the Multi-
part/Related message can have a single part containing the primary SOAP envelope.

Example 2-11. Optional MIME Serialization, Addressing and Transport- OR Message-Level Security
Policy Expression

<All>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsam:Addressing> …</wsam:Addressing>
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding>
 </ExactlyOne>
</All>

Company-X is able to meet their customer needs by adding optional support for the Optimized MIME
Serialization. Optional support is outlined in section 3.4 Web Services Policy 1.5 - Framework and
detailed in section 4.5.2, Web Services Policy 1.5 - Guidelines for Policy Assertion Authors, specifically
for Optimized MIME Serialization. An optional policy assertion represents a behavior that may be
engaged. When a policy assertion is absent from a policy vocabulary (See section 3.2, Web Services
Policy 1.5 - Framework), a policy-aware client should not conclude anything (other than ‘no claims’)
about the absence of that policy assertion. See section 2.11 Attaching Policy Expressions to WSDL
[p.15] on the absence of policy expressions.

10

2.6 Optional Policy Assertion

2.7 Ignorable Policy Expressions

Suppose Company-X decides that it will log SOAP messages sent and received in an exchange. This
behavior has no direct impact on the messages sent on the wire, and does not affect interoperability. Some
parties might have a concern about such logging and might decide not to interact with Company-X
knowing that such logging is performed. To address this concern, Company-X includes a Logging asser-
tion in its policy to enable such parties to be aware of logging. By marking the Logging assertion with the
wsp:Ignorable attribute with a value of "true" Company-X indicates that a requester may choose to
either ignore such assertions or to consider them as part of policy intersection. An assertion that may be
ignored for policy intersection is called an ignorable assertion.

The wsp:Ignorable attribute allows providers to clearly indicate which policy assertions indicate
behaviors that don’t manifest on the wire and may not be of concern to a requester when determining
policy compatibility. Using the wsp:Optional attribute would be incorrect in this scenario, since it
would indicate that the behavior would not occur if the alternative without the assertion were selected.

Example 2-12. Ignorable Logging Policy Assertion

<log:Logging wsp:Ignorable="true" />

(The log: prefix is used here to denote a hypothetical example namespace for this example logging policy
assertion.)

The attribute wsp:Ignorable is of type xs:boolean. Omitting this attribute is semantically equivalent
to including it with a value of "false".

The use of the wsp:Ignorable attribute has no impact on normalization. Assertions marked with the
wsp:Ignorable attribute remain marked with the wsp:Ignorable attribute after normalization.
Please note that the impact of the ignorable attribute is at the discretion of policy consumers through selec-
tion of "lax" or "strict" mode (See 3.4.1 Strict and Lax Policy Intersection [p.25]). Therefore ignorable
assertions may have an effect on determining compatibility of provider and consumer policies.

2.8 Marking Assertions both Optional and Ignorable

As described in the sections above and in Section 3.4.1 Strict and Lax Policy Intersection [p.25] , the
WS-Policy 1.5 specification defines two attributes that can be used to mark an assertion: wsp:Optional and
wsp:Ignorable.

The WS-Policy Framework allows a policy assertion to be marked with both "optional" and "Ignorable"
attributes simultaneously. The presence of "@wsp:optional=true" on an assertion is a syntactic compact
form for two alternatives in normal form, one with the assertion and the other without the assertion. Hence
syntactically marking an assertion "A" with both the @wsp:Optional and @wsp:Ignorable with the value
of "true" for both, is equivalent to two alternatives; one where the assertion A exists with @wsp:Ignor-
able=true and the second where the assertion A does not exist.

11

2.7 Ignorable Policy Expressions

2.9 Nested Policy Expressions

In the previous sections, we considered two security policy assertions. In this section, let us look at one of
the security policy assertions in little more detail.

As you would expect, securing messages is a complex usage scenario. Company-X uses the sp:Trans-
portBinding policy assertion to indicate the use of transport-level security for protecting messages.
Just indicating the use of transport-level security for protecting messages is not sufficient. To successfully
interact with Company-X’s Web services, the developer must know what transport token to use, what
secure transport to use, what algorithm suite to use for performing cryptographic operations, etc. The
sp:TransportBinding policy assertion can represent these dependent behaviors. In this section, let
us look at how to capture these dependent behaviors in a machine-readable form.

A policy assertion – like the sp:TransportBinding - identifies a visible domain specific behavior
that is a requirement. Given an assertion, there may be other dependent behaviors that need to be enumer-
ated for a Web Service interaction. In the case of the sp:TransportBinding policy assertion,
Company-X needs to identify the use of a transport token, a secure transport, an algorithm suite for
performing cryptographic operations, etc. A nested policy expression can be used to enumerate such
dependent behaviors.

What is a nested policy expression? A nested policy expression is a policy expression that is a child
element of a policy assertion element. A nested policy expression further qualifies the behavior of its
parent policy assertion.

In the example below, the child Policy element is a nested policy expression and further qualifies the
behavior of the sp:TransportBinding policy assertion. The sp:TransportToken is a nested
policy assertion of the sp:TransportBinding policy assertion. The sp:TransportToken asser-
tion requires the use of a specific transport token and further qualifies the behavior of the sp:Trans-
portBinding policy assertion (which already requires the use of transport-level security for protecting
messages).

Example 2-13. Transport Security Policy Assertion

<sp:TransportBinding>
 <Policy>
 <sp:TransportToken>
 <Policy>
 <sp:HttpsToken>
 <wsp:Policy/>
 </sp:HttpsToken>
 </Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <Policy>
 <sp:Basic256Rsa15/>
 </Policy>
 </sp:AlgorithmSuite>
 …
 </Policy>
</sp:TransportBinding>

12

2.9 Nested Policy Expressions

The sp:AlgorithmSuite is a nested policy assertion of the sp:TransportBinding policy asser-
tion. The sp:AlgorithmSuite assertion requires the use of the algorithm suite identified by its nested
policy assertion (sp:Basic256Rsa15 in the example above) and further qualifies the behavior of the
sp:TransportBinding policy assertion.

Setting aside the details of using transport-level security, Web service developers can use a policy-aware
client that recognizes this policy assertion and engages transport-level security and its dependent behaviors
automatically. That is, the complexity of security usage is absorbed by a policy-aware client and hidden
from these Web service developers.

In another example, WS-Security Policy defines a sp:HttpToken assertion to contain three possible nested
elements, sp:HttpBasicAuthentication, sp:HttpDigestAuthentication and sp:RequireClientCertificate.
When the HttpToken is used with an empty nested policy in a policy expression by a provider, it will indi-
cate that none of the dependent behaviors namely authentication or client certificate is required. A
non-anonymous client who requires authentication or client certificate will not be able to use this provider
solely on the basis of intersection algorithm alone.

Example 2-14. Empty Nested Assertion

<sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken>
 <wsp:Policy/>
 </sp:HttpsToken>
 </wsp:Policy>
</sp:TransportToken>

2.10 Referencing Policy Expressions

Company-X has numerous Web service offerings that provide different kinds of real-time quotes and book
information on securities such as GetRealQuote , GetRealQuotes and GetExtende-
dRealQuote . To accommodate the diversity of Company-X’s customers, Company-X supports multiple
WSDL bindings for these Web services. Company-X provides consistent ways to interact with their
services and wants to represent these capabilities and requirements consistently across all of their offerings
without duplicating policy expressions multiple times. How? It is simple - a policy expression can be
named and referenced for re-use.

Section 2.2 Simple Message [p.5] , showed how a policy expression can be attached directly to a binding
inline. A single policy expression may be used in several parts of a WSDL document. In this case it is
desirable to use references to the policy expression rather than to directly inline the policy expression.

A policy expression may be identified by an IRI and referenced for re-use as a standalone policy or within
another policy expression. There are three mechanisms to identify a policy expression: the wsu:Id
xml:id and Name attributes. A PolicyReference element can be used to reference a policy expres-
sion identified using either of these mechanisms.

Example 2-15. Common Policy Expression

13

2.10 Referencing Policy Expressions

<Policy wsu:Id=”common”>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsam:Addressing> …</wsam:Addressing>
</Policy>

In the example above, the wsu:Id attribute is used to identify a policy expression. The value of the
wsu:Id attribute is an XML ID. The relative IRI for referencing this policy expression (within the same
document) is #common. If the policy document IRI is http://x.example.com/policy.xml then
the absolute IRI for referencing this policy expression is
http://x.example.com/policy.xml#common. (The absolute IRI is formed by combining the
document IRI, # and the value of the wsu:Id attribute.)

In addition to the Example 2-12, Company-X could have used either the xml:id or wsu:Id. An example of
the use of xml:id similar to that of wsu:Id is shown in Example 2-13.

Example 2-16. Common Policy Expression [xml:id]

<Policy xml:id=”common”>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsam:Addressing> …</wsam:Addressing>
</Policy>

Conditions and constraints on the use of the |xml:id| attribute in conjunction with Canonical XML 1.0 are
specified in Appendix C of XML ID [p.45] and are further detailed in C14N 1.0 Note [p.42] . Significant
care is suggested in the use of xml:id.

Note:

Note: Canonical XML 1.1 [XMLID11 [p.45]] is intended to address the issues that occur with Canonical
XML 1.0 with regards to xml:id . The W3C XML Security Specifications Maintenance WG has been
chartered to address how to integrate Canonical XML 1.1 with XML Security, including XML Signature
[SecSpecMaintWG [p.43]] (See http://www.w3.org/2007/xmlsec/.)

For re-use, a PolicyReference element can be used to reference a policy expression as a standalone
policy or within another policy expression. The example below is a policy expression that re-uses the
common policy expression above.

Example 2-17. PolicyReference to Common Policy Expression

<PolicyReference URI="#common"/>

For referencing a policy expression within the same XML document, Company-X uses the wsu:Id
attribute for identifying a policy expression and an IRI to this ID value for referencing this policy expres-
sion using a PolicyReference element.

The example below is a policy expression that re-uses the common policy expression within another
policy expression. This policy expression requires the use of addressing, one of transport- or
message-level security for protecting messages and allows the use of optimization.

14

2.10 Referencing Policy Expressions

Example 2-18. Secure Policy Expression

<Policy wsu:Id=”secure”>
 <All>
 <PolicyReference URI="#common"/>
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </ExactlyOne>
 </All>
</Policy>

The Name attribute is an alternate mechanism to identify a policy expression. The value of the Name
attribute is an absolute IRI and is independent of the location of the XML document where the identified
policy expression resides in. As such, referencing a policy expression using the Name attribute relies on
additional out of band information. In the example below, the Name attribute identifies the policy expres-
sion. The IRI of this policy expression is http://x.example.com/policy/common .

Example 2-19. Common Policy Expression

<Policy Name=”http://x.example.com/policy/common”>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsam:Addressing> …</wsam:Addressing>
</Policy>

The example below is a policy expression that re-uses the common policy expression above.

Example 2-20. PolicyReference to Common Policy Expression

<PolicyReference URI="http://x.example.com/policy/common"/>

As policy expressions are composed from other policy expressions and assertions from different domains
are used in a policy expression, complex expressions will emerge. Naming parts of complex expressions
for reuse and building more complex policies through referencing enables building more complicated
policy scenerios easily. This approach enables the association of additional policy subjects to identified
policy expressions. It also promotes manageability of the expressions as they are uniquely identified and
allows profiles for common scenerios to be developed. Note that when a named expression has assertions
that contains parametrized expressions, care must be given to ensure that the parameterized content is stat-
ically available to enable reuse.

2.11 Attaching Policy Expressions to WSDL

A majority of Company-X’s customers use WSDL for building their client applications. Company-X
leverages this usage by attaching policy expressions to the WSDL binding descriptions.

In the example below, the SecureBinding WSDL binding description defines a binding for an inter-
face that provides real-time quotes and book information on securities. (The prefixes wsdl and tns are
used here to denote the Web Services Description language XML namespace and target namespace of this
WSDL document.) To require the use of security for these offerings, Company-X attaches the secure
policy expression in the previous section to this binding description. The WSDL binding element is a

15

2.11 Attaching Policy Expressions to WSDL

common policy attachment point. The secure policy expression attached to the SecureBinding WSDL
binding description applies to any message exchange associated with any port that supports this binding
description. This includes all the message exchanges described by operations in the RealTimeDataIn-
terface .

Example 2-21. Secure Policy Expression Attached to WSDL Binding

<wsdl:binding name="SecureBinding" type="tns:RealTimeDataInterface" >
 <PolicyReference URI="#secure" />
 <wsdl:operation name="GetRealQuote"> …</wsdl:operation>
 …
</wsdl:binding>

In addition to providing real-time quotes and book information on securities, Company-X provides other
kinds of data through Web services such as quotes delayed by 20 minutes and security symbols through
Web services (for example GetDelayedQuote , GetDelayedQuotes, GetSymbol and GetSym-
bols). Company-X does not require the use of security for these services, but requires the use of address-
ing and allows the use of optimization.

Example 2-22. Open Policy Expression Attached to WSDL Binding

<wsdl:binding name="OpenBinding" type="tns:DelayedDataInterface" >
 <PolicyReference URI="#common" />
 <wsdl:operation name="GetDelayedQuote"> …</wsdl:operation>
 …
</wsdl:binding>

In the example above, the OpenBinding WSDL binding description defines a binding for an interface
that provides other kinds of data such as quotes delayed by 20 minutes and security symbols. To require
the use of addressing and allow the use of optimization, Company-X attaches the common policy expres-
sion in the previous section to this binding description. As we have seen in the SecureBinding case,
the common policy expression attached to the OpenBinding WSDL binding description applies to any
message exchange associated with any port that supports this binding description. This includes all the
message exchanges described by operations in the DelayedDataInterface .

As mentioned earlier, providers have the option to convey requirements, such as the use of addressing or
security, through word-of-mouth and documentation – as they always have. The absence of policy expres-
sions, for example, in a WSDL document does not indicate anything about the capabilities and require-
ments of a service. The service may have capabilities and requirements that can be expressed as policy
expressions, such as the use of addressing, security and optimization. Or, the service may not have such
capabilities and requirements. A policy aware client should not conclude anything about the absence of
policy expressions.

Service providers, like Company-X, can preserve and leverage their investments in WSDL and represent
the capabilities and requirements of a Web service as policies. A WSDL document may specify varying
behaviors across Web service endpoints. Web service developers can use a policy-aware client that recog-
nizes these policy expressions in WSDL documents and engages behaviors automatically for each of these
endpoints. Any complexity of varying behaviors across Web service endpoints is absorbed by a
policy-aware client or tool and hidden from these Web service developers.

16

2.11 Attaching Policy Expressions to WSDL

2.12 Policy Automates Web Services Interaction

As you have seen, Web Services Policy is a simple language that has four elements - Policy, All ,
ExactlyOne and PolicyReference - and one attribute - wsp:Optional . In practice, service
providers, like Company-X, use policy expressions to represent combinations of capabilities and require-
ments. Web service developers use policy-aware clients that understand policy expressions and engage the
behaviors represented by providers automatically. A sizable amount of complexity is absorbed by
policy-aware clients (or tools) and is invisible to these Web service developers.

Web Services Policy extends the foundation on which to build interoperable Web services, hides complex-
ity from developers and automates Web service interactions.

3. Advanced Concepts: Policy Expression
In 2. Basic Concepts: Policy Expression [p.4] , we covered the basics of Web Services Policy language.
This is the advanced section that provides more in-depth materials for Web Services Policy implementers
and assertion authors. This section covers the following topics:

What is a policy expression?

What is the normal form of a policy expression and how to normalize policy expressions?

What is the policy data model?

How to select a compatible policy alternative?

How to attach policy expressions to WSDL constructs?

How to combine policies?

What are the extensibility points?

What are the parts of a policy assertion?

3.1 Policy Expression

A policy expression is the XML representation and interoperable form of a Web Services Policy. A policy
expression consists of a Policy wrapper element and a variety of child and descendant elements. Child
and descendent elements from the policy language are Policy, All , ExactlyOne and Poli-
cyReference . Other child elements of Policy , All and ExactlyOne are policy assertions. (The
Policy element plays two roles: wrapper element and operator.) Policy assertions can contain a nested
policy expression. Policy assertions can also be marked optional to represent behaviors that may be
engaged (capabilities) for an interaction. The optional marker is the wsp:Optional attribute which is
placed on a policy assertion element.

17

3. Advanced Concepts: Policy Expression

Let us take a closer look at Company-X’s policy expression (see below) from the previous section.

Example 3-1. Company-X’s Secure Policy Expression

<Policy>
 <All>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsam:Addressing> …</wsam:Addressing>
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </ExactlyOne>
 </All>
</Policy>

The Policy element is the wrapper element. The All and ExactlyOne elements are the policy opera-
tors. All other child elements of the All and ExactlyOne elements are policy assertions from domains
such as messaging, addressing, security, reliability and transactions.

3.2 Normal Form for Policy Expressions

Web Services Policy language defines two forms of policy expressions: compact and normal form. Up to
this point, we have used the compact form. The compact form is less verbose than the normal form. The
compact form is useful for authoring policy expressions. The normal form is an intuitive representation of
the policy data model. We will look into the policy data model in the next section.

The normal form uses a subset of constructs used in the compact form and follows a simple outline for its
XML representation:

Example 3-2. Normal Form for Policy Expressions

<Policy>
 <ExactlyOne>
 <All>
 <x:AssertionA> …</x:AssertionA>
 <y:AssertionB> …</y:AssertionB>
 …
 </All>
 <All>
 <x:AssertionA> …</x:AssertionA>
 <z:AssertionC> …</z:AssertionC>
 …
 </All>
 …
 </ExactlyOne>
<Policy/>

The normal form consists of a Policy wrapper element and has one child ExactlyOne element. This
ExactlyOne element has zero or more All child elements. Each of these All elements has zero or
more policy assertions. The PolicyReference element and wsp:Optional attribute are not used in
the normal form. And, a nested policy expression in the normal form has at most one policy alternative.

18

3.2 Normal Form for Policy Expressions

The normal form represents a policy as a collection of policy alternatives and a policy alternative as a
collection of policy assertions in a straight-forward manner.

The example below is a policy expression in the normal form. This expression contains two policy alterna-
tives: one that requires the use of transport-level security and the other that requires the use of
message-level security for protecting messages.

Example 3-3. Transport- or Message-Level Security Policy Expression in Normal Form

<Policy>
 <ExactlyOne>
 <All>
 <sp:TransportBinding> …</sp:TransportBinding>
 </All>
 <All>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </All>
 </ExactlyOne>
</Policy>

A policy expression in the compact form can be converted to the normal form. Web Services Policy
language describes the algorithm for this conversion.

Let us re-consider Company-X’s policy expression (see the example below). Company-X requires the use
of addressing and either transport- or message-level security and allows the use of optimization. This
policy expression is in the compact form and has four policy alternatives for requesters:

1. Requires the use of addressing and transport-level security

2. Requires the use of addressing and message-level security

3. Requires the use of optimization, addressing and transport-level security and

4. Requires the use of optimization, addressing and message-level security.

Example 3-4. Company-X’s Secure Policy Expression in Compact Form

<Policy wsu:Id=”secure”>
 <All>
 <PolicyReference URI=”#common”/>
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </ExactlyOne>
 </All>
</Policy>

<Policy wsu:Id=”common”>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsam:Addressing> …</wsam:Addressing>
</Policy>

19

3.2 Normal Form for Policy Expressions

Let us look at the normal form for this policy expression. The example below is Company-X’s policy
expression in the normal form. As you can see, the compact form is less verbose than the normal form.
The normal form represents a policy as a collection of policy alternatives. Each of the All operators is a
policy alternative. There are four policy alternatives in the normal form. These alternatives map to bullets
(a) through (d) above.

Example 3-5. Company-X’s Policy Expression in Normal Form

<Policy>
 <ExactlyOne>
 <All> <!-- - - - - - - - - - - - - - Policy Alternative (a) -->
 <wsam:Addressing> …</wsam:Addressing>
 <sp:TransportBinding> …</sp:TransportBinding>
 </All>
 <All> <!-- - - - - - - - - - - - - - Policy Alternative (b) -->
 <wsam:Addressing> …</wsam:Addressing>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </All>
 <All> <!-- - - - - - - - - - - - - - Policy Alternative (c) -->
 <mtom:OptimizedMimeSerialization />
 <wsam:Addressing> …</wsam:Addressing>
 <sp:TransportBinding> …</sp:TransportBinding>
 </All>
 <All> <!-- - - - - - - - - - - - - - Policy Alternative (d) -->
 <mtom:OptimizedMimeSerialization />
 <wsam:Addressing> …</wsam:Addressing>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding>
 </All>
 </ExactlyOne>
</Policy>

The wsp:Optional attribute, nested policy expression and PolicyReference element are
converted to their corresponding normal form. The wsp:Optional attribute converts to two alterna-
tives, one with and the other without the assertion. A policy alternative containing an assertion with a
nested policy expression that has multiple policy alternatives converts to multiple policy alternatives
where the assertion contains a nested policy expression that has at most one policy alternative.

The PolicyReference element is replaced with its referenced policy expression. See section 3.6
Policy Retrieval [p.29] for more details on how to retrieve referenced policy expressions.

3.3 Policy Data Model

In the previous section, we considered the normal form for policy expressions. As we discussed, the
normal form represents a policy as a collection of policy alternatives. In this section, let us look at the
policy data model.

Company-X uses a policy to convey the conditions for an interaction. Policy-aware clients, like the one
used by the developer in our example (as explained earlier in 2. Basic Concepts: Policy Expression [p.4]
), view policy as an unordered collection of zero or more policy alternatives. A policy alternative is an
unordered collection of zero or more policy assertions. A policy alternative represents a collection of
behaviors or requirements or conditions for an interaction. In simple words, each policy alternative repre-

20

3.3 Policy Data Model

sents a set of conditions for an interaction. The diagram below describes the policy data model.

Figure 3-1. WS-Policy Data Model

A policy-aware client uses a policy to determine whether one of these policy alternatives (i.e. the condi-
tions for an interaction) can be met in order to interact with the associated Web Service. Such clients may
choose any of these policy alternatives and must choose exactly one of them for a successful Web service
interaction. Clients may choose a different policy alternative for a subsequent interaction. It is important to
understand that a policy is a useful piece of metadata in machine-readable form that enables tooling, yet is
not required for a successful Web service interaction. Why? Web service developers could use the docu-

21

3.3 Policy Data Model

mentation, talk to the service providers, or look at message traces to infer these conditions for an interac-
tion. Developers continue to have these options, as they always had.

As we discussed, a policy assertion identifies a domain specific behavior or requirement or condition. A
policy assertion has a QName that identifies its behavior or requirement or condition. In the XML repre-
sentation, the QName of the assertion element is the QName of the policy assertion. A policy assertion
may contain assertion parameters and a nested policy.

The assertion parameters are the opaque payload of an assertion. Parameters carry additional useful pieces
of information necessary for engaging the behavior described by an assertion. In the XML representation,
the child elements and attributes of an assertion excluding the child elements and attributes from the
WS-Policy language XML namespace name, are the assertion parameters. For example @wsp:Optional
and @wsp:Ignorable are not assertion parameters.

We considered nested policy expressions in the context of a security usage scenario. Let us look at its
shape in the policy data model. In the normal form, a nested policy is a policy that has at most one policy
alternative and is owned by its parent policy assertion. The policy alternative in a nested policy represents
a collection of dependent behaviors or requirements or conditions that qualify the behavior of its parent
policy assertion.

A policy-aware client supports a policy assertion if the client engages the behavior or requirement or
condition indicated by the assertion. A policy-aware client supports a policy alternative if the client
engages the behaviors represented by all the assertions in the alternative. A policy-aware client supports a
policy if the client engages the behaviors represented by at least one of the policy alternatives.

In the previous section, we saw how the normal form of a policy expression represents a policy as a
collection of policy alternatives. By policy language design, the normal form of a policy expression
directly maps to the policy data model:

Each child element of Policy/ExactlyOne/All maps to a policy assertion.

Each Policy/ExactlyOne/All element and policy assertions which correspond to its children
map to a policy alternative.

The Policy/ExactlyOne element maps to a collection of policy alternatives.

The Policy wrapper element and policy alternatives which correspond to the Policy/Exactly-
One element map to a policy.

The diagram below describes this mapping from the normal form of a policy expression to the policy data
model.

22

3.3 Policy Data Model

23

3.3 Policy Data Model

Figure 3-2. Mapping from Normal Form to Policy Data Model

3.4 Compatible Policies

A provider, like Company-X, and a requester, like the policy-aware client used in our example, may repre-
sent their capabilities and requirements for an interaction as policies and want to limit their message
exchanges to mutually compatible policies. Web Services Policy defines an intersection mechanism for
selecting compatible policy alternatives when there are two or more policies.

The example below is a copy of Company-X’s policy expression (from 3.2 Normal Form for Policy
Expressions [p.18]). As we saw before, Company-X offers four policy alternatives. Of them, one of the
policy alternatives requires the use of addressing and transport-level security.

Example 3-6. Company-X’s Policy Expression

<Policy>
 <ExactlyOne>
 <All> <!-- - - - - - - - - - Company-X’s Policy Alternative (a) -->
 <!-- - - - - - - - - - - - - - - - - - Policy Assertion (c1) -->
 <wsam:Addressing> …</wsam:Addressing>
 <!-- - - - - - - - - - - - - - - - - - Policy Assertion (c2) -->
 <sp:TransportBinding> …</sp:TransportBinding>
 </All>
 …
 </ExactlyOne>
</Policy>

The client application developer’s organization requires the use of addressing and transport-level security
for any interaction with Company-X’s Web services. The developer represents these behaviors using a
policy expression illustrated in the example below in normal form. This policy expression contains one
policy alternative that requires the use of addressing and transport-level security.

Example 3-7. The Client Application’s Policy Expression in Normal Form

<Policy>
 <ExactlyOne>
 <All> <!-- - - - - - - - - - - - - - Client’s Policy Alternative -->
 <!-- - - - - - - - - - - - - - - - - - Policy Assertion (t1) -->
 <sp:TransportBinding> …</sp:TransportBinding>
 <!-- - - - - - - - - - - - - - - - - - Policy Assertion (t2) -->
 <wsam:Addressing> …</wsam:Addressing>
 </All>
 </ExactlyOne>
</Policy>

The developer lets her policy-aware client select a compatible policy alternative in Company-X’s policy.
How does this client select a compatible policy alternative? It is simple – it uses the policy intersection.
That is, the policy-aware client uses these two policy expressions (the client’s and Company-X’s) and the
policy intersection to select a compatible policy alternative for this interaction. Let us look at the details of
policy intersection.

24

3.4 Compatible Policies

For two policy assertions to be compatible they must have the same QName. And, if either assertion has a
nested policy, both assertions must have a nested policy and the nested policies must be compatible. For
example, policy assertions (c2) and (t1) have the same QName, sp:TransportBinding . For this
discussion, let us assume that these two assertions have compatible nested policies. These two assertions
are compatible because they have the same QName and their nested policies are compatible.

Two policy alternatives are compatible if each policy assertion in one alternative is compatible with a
policy assertion in the other and vice-versa. For example, policy assertions (c1) and (c2) in Company-X’s
policy alternative are compatible with policy assertions (t2) and (t1) in tje client’s policy alternative.
Company-X’s policy alternative (a) and the client’s policy alternative are compatible because assertions in
these two alternatives are compatible.

Two policies are compatible if a policy alternative in one is compatible with a policy alternative in the
other. For example, Company-X’s policy alternative (a) is compatible with the client’s policy alternative.
Company-X’s policy and the client’s policy are compatible because one of Company-X’s policy alterna-
tive is compatible with the client’s policy alternative.

For this interaction, the developer’s policy-aware client can use policy alternative (a) to satisfy
Company-X’s conditions or requirements.

Similarly, policy intersection can be used to check if providers expose endpoints that conform to a stan-
dard policy. For example, a major retailer might require all their supplier endpoints to be compatible with
an agreed upon policy.

3.4.1 Strict and Lax Policy Intersection

The previous sections outlined how the normal-form of a policy expression relate to the policy data model
and how the compatibility of requester and provider policies may be determined. This section outlines
how ignorable assertions may impact the process of determining compatibility.

In order to determine compatibility of its policy expression with a provider policy expression, a requester
may use either a "lax" or "strict" mode of the intersection algorithm.

In the strict intersection mode two policy alternatives are compatible when each assertion in one is
compatible with an assertion in the other, and vice versa. For this to be possible they must share the same
policy alternative vocabulary. The strict intersection mode is the mode of intersection discussed in the
previous sections of this document.

When using the strict intersection mode all assertions are part of the policy alternative vocabulary, includ-
ing those marked with wsp:Ignorable . Thus the wsp:Ignorable attribute does not impact the
intersection result even when its attribute value is “true”.

If a requester wishes to ignore ignorable assertions in a provider’s policy, then the requester should use the
lax intersection mode. In the lax intersection mode all ignorable assertions (i.e. with the value "true" for
the wsp:Ignorable attribute) are to be ignored by the intersection algorithm. Thus in the lax intersec-
tion mode two policy alternatives are compatible when each non-ignorable assertion in one is compatible
with an assertion in the other, and vice versa. For this to be possible the two policy alternatives must share
a policy alternative vocabulary for all “non-ignorable” assertions.

25

3.4 Compatible Policies

Regardless of the chosen intersection mode, ignorable assertions do not express any wire-level require-
ments on the behavior of consumers - in other words, a consumer could choose to ignore any such asser-
tions that end up in the resulting policy after intersection, with no adverse effects on runtime interactions.

Domain-specific processing could take advantage of any information from the policy data model, such as
the ignorable property of a policy assertion.

A requester can decide how to process a provider’s policy to determine if and how the requester will inter-
act with the provider. The requester can have its own policy that expresses its own capabilities and
requirements, and can make one or more attempts at policy intersection in order to determine a compatible
alternative and/or isolate the cause of an empty intersection result. The requester can use and analyze the
result(s) of policy intersection to select a compatible alternative or trigger other domain-specific process-
ing options. For example, a requester can at first attempt strict mode intersection, and then lax mode as
another choice, if the previous attempt returns an empty intersection result.

3.5 Attaching Policy Expressions to WSDL

In 2. Basic Concepts: Policy Expression [p.4] , we looked into how Company-X attached their policy
expressions to the WSDL binding element. In addition to the WSDL binding element, a policy
expression can be attached to other WSDL elements such as service , port , operation and
message . These elements are the WSDL policy attachment points in a WSDL document.

The WSDL attachment points are partitioned (as illustrated below) into four policy subjects: message,
operation, endpoint and service. When attached, capabilities and requirements represented by a policy
expression apply to a message exchange or message associated with (or described by) a policy subject.

26

3.5 Attaching Policy Expressions to WSDL

Figure 3-3. Policy Subjects and Effective Policy in WSDL

The WSDL service element represents the service policy subject. Policy expressions associated with a
service policy subject apply to any message exchange using any of the endpoints offered by that service.

27

3.5 Attaching Policy Expressions to WSDL

The WSDL port , binding and portType elements collectively represent the endpoint policy subject.
Policy expressions associated with an endpoint policy subject apply to any message exchange made using
that endpoint.

The WSDL binding/operation and portType/operation elements collectively represent the
operation policy subject. Policy expressions associated with an operation policy subject apply to the
message exchange defined by that operation.

The WSDL binding/operation/input , portType/operation/input , and message
element collectively represent the message policy subject for the input message. The WSDL
binding/operation/output , portType/operation/output , and message element collec-
tively represent the message policy subject for the output message. The WSDL binding/opera-
tion/fault , portType/operation/fault , and message element collectively represent the
message policy subject for the fault message. Policy expressions associated with a message policy subject
apply only to that message.

In the example below, the policy expression is attached to an endpoint policy subject.

Example 3-8. Company-X’s Policy Expression Attached to WSDL binding Element

<wsdl:binding name="SecureBinding" type="tns:RealTimeDataInterface" >
 <PolicyReference URI="#secure" />
 <wsdl:operation name="GetRealQuote"> …</wsdl:operation>
 …
</wsdl:binding>

If multiple policy expressions are attached to WSDL elements that collectively represent a policy subject
then the effective policy of these policy expressions applies. The effective policy is the combination of the
policy expressions that are attached to the same policy subject. For example, the effective policy of an
endpoint policy subject is the combination of policy expressions attached to a WSDL port element,
policy expressions attached to the binding element referenced by this port, and policy expressions
attached to the portType element that is supported by this port. Let us consider how to combine policy
expressions in the next section.

Most of the policy assertions are designated for the endpoint, operation or message policy subject. The
commonly used WSDL attachment points are:

Policy Subject Commonly used attachment point (s)

Endpoint binding element

Operation binding/operation element

Message binding/operation/input and binding/operation/output elements

28

3.5 Attaching Policy Expressions to WSDL

3.6 Policy Retrieval

Just as other service metadata languages, Web Services Policy does not mandate any specific policy
retrieval mechanism. Any combination of any retrieval mechanisms in any order may be used for referenc-
ing policy expressions. Example retrieval mechanisms are:

Do nothing. A policy expression with the referenced IRI is already known to be available in a local
cache or chip (embedded systems).

Use the referenced IRI and retrieve an existing policy expression from the containing XML docu-
ment: a policy element with an XML ID.

Use the referenced IRI and retrieve a policy expression from some policy repository (local or remote)
or catalog. Policy tools may use any protocols (say Web Services Metadata Exchange) for such meta-
data retrieval. These protocols may require additional out of band information.

Attempt to resolve the referenced IRI on the Web. This may resolve to a policy element or a resource
that contains a policy element.

If the referenced policy expression is in the same XML document as the reference, then the policy expres-
sion should be identified using the wsu:Id|xml:id (XML ID) attribute and referenced using an IRI
reference to this XML ID value.

WSDL 1.1 [WSDL 1.1 [p.44]] section 2.1 and WSDL 2.0 [WSDL 2.0 Core Language [p.44]] chapter 4
allow to import or include WSDL documents into another WSDL document with the wsdl11:import,
wsdl20:import, and wsdl20:include statements. The importing and imported WSDL documents constitute
separate XML documents each. If e.g. the importing WSDL document references a policy in the imported
WSDL document, the rules for policy references between separate XML documents apply as described in
2.10 Referencing Policy Expressions [p.13] .

3.7 Combine Policies

Multiple policy expressions may be attached to WSDL constructs. Let us consider how Company-X could
have used multiple policy expressions in a WSDL document. In the example below, there are two policy
expressions #common2 and #secure2 attached to the SecureBinding WSDL binding and Real-
TimeDataPort WSDL port descriptions.

Example 3-9. Multiple Policy Expressions Attached to Endpoint Policy Subject

<Policy wsu:Id=”common2”>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsam:Addressing> …</wsam:Addressing>
</Policy>
<Policy wsu:Id=”secure2”>
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </ExactlyOne>
</Policy>
<wsdl:binding name="SecureBinding" type="tns:RealTimeDataInterface" >

29

3.6 Policy Retrieval

 <PolicyReference URI="#secure2" />
 <wsdl:operation name="GetRealQuote"> …</wsdl:operation>
 …
</wsdl:binding>
<wsdl:service name=”RealTimeDataService”>
 <wsdl:port name=”RealTimeDataPort” binding=”tns:SecureBinding”>
 <PolicyReference URI="#common2"/>
 …
 </wsdl:port>
</wsdl:service>

As we discussed before, the WSDL port , binding and portType elements collectively represent the
endpoint policy subject. In the example above, the #common2 and #secure2 policy expressions
attached to the SecureBinding WSDL binding and RealTimeDataPort WSDL port descriptions
collectively apply to any message exchange associated with the RealTimeDataPort WSDL port.

As in the example above, multiple policy expressions may be attached to Web service constructs that
collectively represent a single policy subject. When there are multiple policy expressions attached to the
same policy subject then the effective policy or combination of these policy expressions apply to the asso-
ciated policy subject.

The effective policy is the combination of two or more policy expressions attached to the same policy
subject. The combination of two policy expressions, also known as the merged policy expression, is a new
policy expression that combines these two policy expressions using the All policy operator.

The policy expression below is the combination of the two policy expressions attached to the Secure-
Binding WSDL binding and RealTimeDataPort WSDL port descriptions. The #common2 policy
expression has two policy alternatives. The #secure2 policy expression has two policy alternatives. The
combination of these two policies is equivalent to Company-X’s secure policy in 2. Basic Concepts:
Policy Expression [p.4] and has four policy alternatives. In other words, the combination of two policies
is the cross product of alternatives in these two policies.

Example 3-10. Effective Policy of the Endpoint Policy Subject in the Previous Example

<Policy>
 <All>
 <Policy>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsam:Addressing> …</wsam:Addressing>
 </Policy>
 <Policy>
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </ExactlyOne>
 </Policy>
 </All>
</Policy>

Of course, the above policy expression can be normalized. There are four policy alternatives in the normal
form. As we have seen in the policy data model, a policy is an unordered collection of policy alternatives.
That is, the order of policy alternatives is insignificant. Therefore, the order of combining these policy

30

3.7 Combine Policies

expressions is insignificant.

3.8 Extensibility and Versioning

3.8.1 Policy Language

Web Services Policy language is an extensible language by design. The Policy , ExactlyOne , All
and wsp:PolicyReference elements are extensible. The Policy element allows child element and
attribute extensibility, while the ExactlyOne and All elements allow child element extensibility. The
PolicyReference child element allows element and attribute extensibility. Extensions must not use
the policy language XML namespace name. A consuming processor processes known attributes and
elements, ignores unknown attributes and treats unknown children of the Policy , ExactlyOne , All
elements as policy assertions. The child elements of wsp:PolicyReference are ignored.

The PolicyReference element allows element and attribute extensibility.

3.8.2 Policy Expressions

Services that use the Web Services Policy language for policy expression enable simple versioning prac-
tices that allow requesters to continue the use of older policy alternatives in a backward compatible
manner. This versioning practice allows service providers, like Company-X, to deploy new behaviors
using additional (or new) policy assertions without breaking compatibility with clients that rely on any
older policy alternatives. We use examples below to illustrate how versioning might be done.

The example below represents a Company-X version 1 policy expression. This expression requires the use
of addressing and transport-level security for protecting messages.

Example 3-11. Company-X’s Version 1 Policy Expression

<Policy>
 <ExactlyOne>
 <All>
 <wsam:Addressing> …</wsam:Addressing>
 <sp:TransportBinding> …</sp:TransportBinding>
 </All>
 </ExactlyOne>
</Policy>

Over time, Company-X adds support for advanced behaviors: requiring the use of addressing and
message-level security for protecting messages. They would like to add this advanced support without
breaking compatibility with requesters that rely on addressing and transport-level security. The example
below is Company-X’s version 2 policy expression. In this version, Company-X adds a new policy alter-
native that requires the use of addressing and message-level security. The clients that rely on addressing
and transport-level security may continue to interact with Company-X’s using the old policy alternative.
Of course, these clients have the option to migrate from using old policy alternatives to new policy alter-
natives.

31

3.8 Extensibility and Versioning

Example 3-12. Company-X’s Version 2 Policy Expression

<Policy>
 <ExactlyOne>
 <All>
 <wsam:Addressing> …</wsam:Addressing>
 <sp:TransportBinding> …</sp:TransportBinding>
 </All>
 <All> <!-- - - - - - - - - - - - - - - - NEW Policy Alternative -->
 <wsam:Addressing> …</wsam:Addressing>
 <sp:AsymmetricBinding> …</sp: AsymmetricBinding >
 </All>
 </ExactlyOne>
</Policy>

When Company-X added support for advanced behaviors, they spent time to plan for the continued
support for existing clients, the smooth migration from using current to advanced behaviors, and the
switch to use only the advanced behaviors in the near future (i.e. sun-setting current behaviors). In this
versioning scenario, a policy expression with multiple alternatives was used to represent current and
advanced behaviors in a non-disruptive manner: no immediate changes to existing clients are required and
these clients can smoothly migrate to new functionality when they choose to. This level of versioning
support in a policy expression enables the same class of versioning best practices built into WSDL
constructs such as service, port and binding.

Let us look at tooling for unknown policy assertions. As service providers, like Company-X, incrementally
deploy advanced behaviors, some requesters may not recognize these new policy assertions. As discussed
before, these requesters may continue to interact using old policy alternatives. New policy assertions will
emerge to represent new behaviors and slowly become part of everyday interoperable interaction between
requesters and providers. For example, most tools use a practical tolerant strategy to process new or unrec-
ognized policy assertions. These tools consume such unrecognized assertions and designate these for user
intervention. As you would recognize, there is nothing new in this practice. This is similar to how a proxy
generator that generates code from WSDL creates code for all the known WSDL constructs and allows
Web service developers to fill in code for custom or unknown constructs in the WSDL.

3.8.3 Use of Ignorable attribute and an alternative Versioning Scenario

One potential use of the wsp:Ignorable attribute is to mark versioning related information by creating a
new policy assertion within a policy expression. The new assertion is added to the original policy expres-
sion and then the service can update the assertion parameter values when the service expires.

One scenario that illustrates this is a service which will support a particular version of a service until a
certain point in time. After that time, the service will not be supported. In this scenario, the expiry date and
time of the service would be a new policy assertion [see Guidelines section 4] that the service provider
defines . This hypothetical EndOfLife policy assertion is then included in the original policy expression,
but it could be marked as ignorable. The service, in this case, wants to inform the consumers it does have
an expiry time, and so it is useful to convey this information from the beginning to help smooth the
versioning process.

32

3.8 Extensibility and Versioning

Company-X could specify that one policy alternative will expire at a certain point in time using the hypo-
thetical ignorable Company-X expiry assertion. The example below shows how Company-X can create a
new version 2 policy expression with a second hypothetical ignorable EndOfLife Assertion with a differ-
ent date and time.

Example 3-13. Company-X’s Version 2 Policy Expression with hypothetical ignorable EndOfLife Asser-
tion

<Policy>
 <ExactlyOne>
 <All>
 <company-x:EndOfLife wsp:Ignorable="true"/>Mar-31-2008</company-x:EndOfLife>
 <wsam:Addressing> …</wsam:Addressing>
 <sp:TransportBinding> …</sp:TransportBinding>
 </All>

 <!-- NEW Policy Alternative -->
 <All>
 <company-x:EndOfLife wsp:Ignorable="true">Mar-31-2999</company-x:EndOfLife>
 <wsam:Addressing> …</wsam:Addressing>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding>
 </All>
 </ExactlyOne>
</Policy>

In this variant of the versioning scenario, the use of ignorable allows versioning related information to be
conveyed and used where understood.

In a scenario such as this, CompanyX is acting as both a policy assertion author and a policy expression
author. As a policy expression author, when an assertion type is tagged as ignorable information, the use
of strict or lax mode and presence or absence of the assertion type in the first version are important deci-
sions.

3.8.4 Use of Ignorable and Optional attributes

If Company-X knows about the hypothetical EndOfLife Policy assertion, it may or may not mark that
assertion with wsp:Optional="true" in the first version. If it does include the assertion, marks the assertion
with wsp:Ignorable="true" and wsp:Optional="false", then a client that:

does not know about the assertion and using lax intersection will produce an intersection.

does not know about the assertion and using strict intersection will not produce an intersection.

does know about the assertion and using strict or lax intersection will produce an intersection.

If it does include the assertion, marks the assertion with wsp:Ignorable="true" and wsp:Optional="true",
then a client that:

does or does not know about the assertion and using lax or strict intersection will produce an intersec-
tion.

33

3.8 Extensibility and Versioning

The following table summarizes the requester assertion knowledge and intersection mode on the left vs
provider ignorable and optional on the top

Requester \
Provider

Required
Required and Ignorable (for
intersection)

Optional
Optional and Ignorable (for
intersection)

does not know,
lax

No Yes Yes Yes

does not know,
strict

No No Yes Yes

does know, lax Yes Yes Yes Yes

does know, strict Yes Yes Yes Yes

If Company-X adds the hypothetical EndOfLife policy assertion type to a subsequent Alternative and does
not mark the assertion with wsp:Optional="true", then after the policy expression has been deployed/used
the same algorithm holds true, notably that a client using strict mode that does not understand the assertion
will not intersect with the alternative. If CompanyX adds the hypothetical EndOfLife policy assertion with
an ignorable attribute and does mark the assertion with wsp:Optional="true", then clients using strict mode
who do not understand the hypothetical EndOfLife assertion with the ignorable information will still be
compatible with the alternative that does not contain the hypothetical EndOfLife policy assertion as per
the intersection rules. When wsp:Ignorable="true" is used, clients that are unaware of the hypothetical
EndOfLife assertion may make more requests for expired services. This could result in servers generating
Faults if the request is received after the expiry date. .

If Company-X knows about the hypothetical EndOfLife Policy assertion, it can guarantee that clients that
know or don’t know about the hypothetical EndOfLife Policy Assertion can intersect under any mode by
marking the assertion with wsp:Optional="true". Clients that know about the hypothetical EndOfLife
Policy assertion and performing strict intersection can guarantee interaction with services that know or
don’t know about the hypothetical EndOfLife Policy assertion by marking the assertion with
wsp:Optional="true". Clients that know about the hypothetical EndOfLife Policy assertion and performing
lax intersection can guarantee interaction with services that know or don’t know about the hypothetical
EndOfLife Policy assertion by marking the assertion with wsp:Optional="true" or marking it with
wsp:Ignorable="true".

Because the actual value of the date/time may not be known when the policy expression is first created, a
value that is roughly infinitely in the future is used. A subsequent policy alternative could refine the value
and domain specific processing of the assertion can differentiate the value. The advantage of adding the
end of life information through a domain specific assertion is that some clients will have a machine
processable way of knowing when the alternative will no longer be supported by evaluating the policy
assertions in a policy expression. Without this information in a policy expression, the information must be
conveyed in some other way or it will not be conveyed at all. This can usefully smooth the transition
between versions of a service.

34

3.8 Extensibility and Versioning

The disadvantage of adding the end of life information through a domain specific assertion is that clients
need to understand the semantics of the hypothetical EndOfLife assertion in order to know whether a
particular alternative is still valid. For example, a client that doesn’t know what the parameter
“Mar-31-2008” means, will not know that the service is no longer available on April 1, and may send
messages to this service in April, and if the service enforces “end of life”, these messages may fail.

3.9 Parts of a Policy Assertion

As we discussed, a policy assertion identifies a domain specific behavior or requirement or condition. A
policy assertion has a QName that identifies its behavior or requirement or condition. A policy assertion
may contain assertion parameters and a nested policy.

Let us look at the anatomy of a policy assertion from the security domain. The policy expression in the
diagram below uses the sp:IssuedToken policy assertion. This assertion illustrates the use of assertion
parameters and nested policy.

35

3.9 Parts of a Policy Assertion

Figure 3-4. sp:IssuedToken Policy Assertion

The sp:IssuedToken element is a policy assertion that identifies the use of a security token – such as
SAML token - issued by a third party for protecting messages. A policy assertion is an XML element. The
QName of this element represents the behavior identified by this policy assertion.

The sp:IssuedToken policy assertion has three parameters: @sp:IncludeToken , sp:Issuer
and sp:RequestSecurityTokenTemplate .

The sp:IncludeToken attribute is a parameter that contains information on whether a security token
should be included in messages or an external reference to the key of this security token should be used.
The sp:Issuer parameter is an endpoint reference to a security token issuer. The sp:RequestSecu-
rityTokenTemplate parameter contains the necessary information to request a security token from
the specified issuer. Parameters are the opaque payload of a Policy Assertion, carry useful information for
engaging the behavior described by an assertion and are preserved through policy processing such as
normalize, merge and intersection. requesters may use policy intersection to select a compatible policy
alternative for an interaction. Assertion parameters do not affect the outcome of policy intersection.

For the sp:Issuer policy assertion parameter, the assertion author uses the natural XML structural rela-
tionships (the child elements and attributes) and encodes the relationship between an assertion and its
parameters in a machine readable form. Assertion parameters may be represented as child XML elements
or attributes of an assertion. The policy language allows assertion authors to strongly tie the relationship
between an assertion and its parameters using the natural XML structural relationships.

The sp:IssuedToken policy assertion has a nested policy expression. The sp:RequireInter-
nalReference element is a nested policy assertion of the sp:IssuedToken policy assertion. The
sp:RequireInternalReference assertion requires the use of an internal reference for referencing
the issued token. A nested policy assertion further qualifies a dependent behavior of its parent policy
assertion. As mentioned earlier, requesters may use policy intersection to select a compatible policy alter-
native for an interaction. Nested policy assertions affect the outcome of policy intersection.

The sp:IssuedToken security policy assertion identifies a visible domain specific behavior: the use of
a security token – such as SAML token - issued by a third party for protecting messages. This behavior is
relevant to a Web service interaction. For the sake of discussion, let us assume that Company-X requires
the use of a SAML token issued by a third party. Service providers, like Company-X, must convey this
usage and all the necessary information to obtain this security token for Web service developers. This is a
key piece of metadata for a successful interaction with Company-X’s Web services.

4. Versioning Policy Language

Editorial note

The WG is contemplating moving some or all of this material into a non-normative appendix of the
framework or attachment document. User feedback is solicited

36

4. Versioning Policy Language

Over time, the Policy WG or third parties can version or extend the Policy Language with new or modified
constructs. These constructs may be compatible or incompatible with previous versions. Some of the
possible new constructs that have been mentioned previously are: new operators, operator cardinality,
policy identification, compact syntax, Policy Inclusion, security, referencing, attachment points, alterna-
tive priority, effective dating, negotiation.

WS-Policy provides extensibility points on 6 elements with a combination of attribute and/or element
extensibility. The possible extensibility points are:

1. Policy: element from ##other namespace and any attribute

2. PolicyReference: any attribute and any element

3. ExactlyOne, All: element from ##other namespace, no attribute extensibility

4. PolicyAttachment: element from ##other namespace and any attribute

5. AppliesTo: any element and any attribute

4.1 Policy Framework

WS-Policy Framework 1.5 specifies that any child element that is not known inside a Policy, ExactlyOne
or All will be treated as an assertion. The default value for wsp:Optional="false". After normalization,
such an element will be inside an ExactlyOne/All operator.

Let us show an example with a hypothetical new operator that is a Choice with a minOccurs and a maxOc-
curs attributes, ala XSD:Choice, in a new namespace. We use the wsp16 prefix to indicate a hypothetical
Policy Language 1.6 that is intended to be compatible with Policy Language 1.5:

Example 4-1. Policy containing 1.5 and 1.6 Policies.

<wsp:Policy>
 <wsp:ExactlyOne>
 <wsp16:Choice wsp16:minOccurs="1" wsp16:maxOccurs="2">
 ...
 </wsp16:Choice>
 <wsp:All>
 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

The normalization rule for wsp:Optional="false" would be applied to the wsp16:Choice, yielding the
following expression:

Example 4-2. Normalized Policy containing 1.5 and 1.6 Policies

<wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:ExactlyOne>
 <wsp:All>

37

4.1 Policy Framework

 <wsp16:Choice wsp16:minOccurs="1" wsp16:maxOccurs="2">
 ...
 </wsp16:Choice>
 </wsp:All>
 </wsp:ExactlyOne>
 <wsp:All>
 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Alternatively, the wsp:Optional could be set to "true" on the choice, as in:

Example 4-3. Policy containing explicit wsp:Optional="true"

<wsp:Policy>
 <wsp16:Choice wsp16:minOccurs="1" wsp16:maxOccurs="2"
wsp:Optional="true">
 ...
 </wsp16:Choice>
</wsp:Policy>

The normalized form will be:

Example 4-4. Normalized policy

<wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:All>
 <wsp16:Choice wsp16:minOccurs="1" wsp16:maxOccurs="2">
 ...
 </wsp16:Choice>
 </wsp:All>
 <wsp:All/>
 </wsp:ExactlyOne>
</wsp:Policy>

Because the wsp16:Choice alternative isn’t understood in either normalized form, it will not be chosen as
one of the alternatives and will effectively be ignored. Policy intersection may be more difficult with such
compatible extensions. For example, the previous will "look" like it has a wsp16:Choice typed assertion.
To determine intersection with a Policy that does not have the wsp16:Choice type assertion, domain
specific processing would have to be done. However, there is an alternative that does not have the
wsp16:Choice, so intersection would yield the expected result.

Note: it is possible to add new names to the existing namespace, such as:

Example 4-5. Policy containing 1.5 and 1.6 Policies all in the 1.5 namespace

38

4.1 Policy Framework

<wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:Choice wsp:minOccurs="1" wsp:maxOccurs="2">
 ...
 </wsp:Choice>
 <wsp:All>
 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Notice that using a new namespace can result in backwards and forwards compatibility if normalization
results in an optional alternative.

Best practice: insert new elements in an optional alternative or mark with wsp:Optional="true".

Incompatible versions of the Policy language may be indicated by a new namespace name for at least the
new and/or incompatible elements or attributes. Imagine that the Choice operator is required by a future
version of Policy, then there will be a new namespace for the Policy element. We use the wsp20 prefix to
indicate a hypothetical Policy Language 2.0 that is intended to be incompatible with Policy Language 1.5:

Example 4-6. Policy containing 2.0 only Policies.

<wsp20:Policy>
 <wsp20:ExactlyOne>
 <wsp20:Choice wsp:minOccurs="1" wsp:maxOccurs="2">
 ...
 </wsp20:Choice>
 ...
 </wsp20:ExactlyOne>
</wsp20:Policy>

The new Policy operator could be embedded inside an existing Policy element:

Example 4-7. Policy containing 2.0 (incompatible with 1.5) Policies embedded in wsp 1.5 Policy.

<wsp:Policy>
 <wsp20:Choice wsp:minOccurs="1" wsp:maxOccurs="2">
 ...
 </wsp20:Choice>
 ...
</wsp20:Policy>

This will be treated as an Assertion for normalization and intersection computation. This will result in only
one alternative that requires the wsp20:Choice, the intended behaviour for incompatible changes.

Best practice: use a new namespace for new incompatible construct and insert inside either: new Policy
element OR existing All for future incompatible policy extensions.

A future version of WS-Policy could support the current operators in the existing namespace, such as:

39

4.1 Policy Framework

Example 4-8. Policy containing 1.5 operator in 2.0 Policy

<wsp20:Policy>
 <wsp:ExactlyOne>
 <wsp20:Choice wsp:minOccurs="1" wsp:maxOccurs="2">
 ...
 </wsp20:Choice>
 ...
 </wsp:ExactlyOne>
</wsp20:Policy>

It is difficult to predict whether this functionality would be useful. The future version of WS-Policy
doesn’t appear to be precluded from doing this.

4.2 Policy Attachment

Policy attachment provides WSDL 1.1 and UDDI attachment points. It appears that exchange of Policy
will be in the context of WSDL or UDDI. WRT WSDL, the policy model is an extension of the WSDL
definition. As such, it is likely that future versions of Policy will be exchanged as multiple Policy expres-
sions within a WSDL. One alternative is that there would be a separate WSDL for each version of Policy.
The problem of how to specify and query for compound documents is very difficult, so it is more likely
that each version of Policy will be exchanged within a WSDL.

We show an example of a new version of policy that allows QName reference to Policies in the PolicyRef-
erence:

Example 4-9. WSDL containing 1.5 and 2.0 (compatible with 2.0) Policy References.

<wsdl11:binding name="StockQuoteSoapBinding" type="fab:Quote" >
 <wsoap12:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:All>
 <wsp:PolicyReference URI="#RmPolicy"
wsdl11:required="true" />
 <wsp:PolicyReference URI="#X509EndpointPolicy"
wsdl11:required="true" />
 </wsp:All>
 <wsp:All>
 <wsp:PolicyReferenceByQName ref="rmp:RMAssertion"
wsdl11:required="true" />
 <wsp:PolicyReferenceByQName ref="sp:AsymmetricBinding"
wsdl11:required="true" />
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 <wsdl11:operation name="GetLastTradePrice" >
 ...

40

4.2 Policy Attachment

The PolicyReference element is element or attribute extensible. One example of an addition is a list of
backup URIs for the PolicyReference:

Example 4-10. WSDL containing 1.5 and 2.0 (compatible with 2.0) Policy References.

<wsdl11:binding name="StockQuoteSoapBinding" type="fab:Quote" >
 <wsoap12:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:All>
 <wsp:PolicyReference URI="" wsp16:alternateURIs="URI*"
wsdl11:required="true" />
 <wsp:PolicyReference URI="" wsp16:alternateURIs="URI*"
wsdl11:required="true" />
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 <wsdl11:operation name="GetLastTradePrice" >
 ...

The policy framework specification says that any unknown attributes are ignored. A Policy 1.5 processor
will not understand the wsp16:alternateURI attribute, it will be ignored. A Policy 1.6 processor will under-
stand the alternate URIs so it won’t be ignored.

PolicyAttachment and AppliesTo also have extensibility points. We choose not to illustrate these at this
time.

5. Conclusion
Service providers use Web Services Policy to represent combinations of behaviors (capabilities and
requirements). Web service developers use policy-aware clients that understand policy expressions and
engage the behaviors represented by providers automatically. These behaviors may include security, relia-
bility, transaction, message optimization, etc. Web Services Policy is a simple language, hides complexity
from developers, automates Web service interactions, and enables secure, reliable and transacted Web
Services.

A. Security Considerations
Security considerations are discussed in the Web Services Policy Framework [p.44] document.

B. XML Namespaces
The table below lists XML Namespaces that are used in this document. The choice of any namespace
prefix is arbitrary and not semantically significant.

41

5. Conclusion

Table B-1. Prefixes and XML Namespaces used in this specification.

Prefix XML Namespace Specifications

mtom http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserialization
[WS-MTOMPolicy
[p.43]]

soap http://www.w3.org/2003/05/soap-envelope
[SOAP 1.2
Messaging Frame-
work [p.43]]

sp http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
[WS-SecurityPolicy
[p.44]]

wsa http://www.w3.org/2005/08/addressing
[WS-Addressing
Core [p.43]]

wsam http://www.w3.org/2007/05/addressing/metadata
[WS-Addressing
Metadata [p.43]]

wsdl http://schemas.xmlsoap.org/wsdl/ [WSDL 1.1 [p.44]]

wsp http://www.w3.org/ns/ws-policy

[Web Services
Policy Framework
[p.44] , Web
Services Policy
Attachment [p.44]
]

wss http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
[WS-Security 2004
[p.44]]

wst http://schemas.xmlsoap.org/ws/2005/02/trust [WS-Trust [p.44]]

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
[WS-Security 2004
[p.44]]

C. References
[C14N 1.0 Note]

Known Issues with Canonical XML 1.0 (C14N/1.0), J. Kahan and K. Lanz, Editors. World Wide Web
Consortium, 17 August 2006. Available at http://www.w3.org/2006/04/c14n-note/c14n-note.html.>

42

C. References

http://www.w3.org/2006/04/c14n-note/c14n-note.html

[MTOM]
SOAP Message Transmission Optimization Mechanism, M. Gudgin, N. Mendelsohn, M. Nottingham
and H. Ruellan, Editors. World Wide Web Consortium, 25 January 2005. This version of the SOAP
Message Transmission Optimization Mechanism Recommendation is
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/. The latest version of SOAP Message
Transmission Optimization Mechanism is available at http://www.w3.org/TR/soap12-mtom/.

[WS-MTOMPolicy]
MTOM Serialization Policy Assertion (WS-MTOMPolicy), C. Ferris, et al, Authors. International
Business Machines Corporation and Microsoft Corporation, Inc., September 2006. Available at
http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserialization/

[SOAP 1.1]
Simple Object Access Protocol (SOAP) 1.1, D. Box, et al, Editors. World Wide Web Consortium, 8
May 2000. Available at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[SOAP 1.2 Messaging Framework]
SOAP Version 1.2 Part 1: Messaging Framework, M. Gudgin, M. Hadley, N. Mendelsohn, J-J.
Moreau, H. Frystyk Nielsen, Editors. World Wide Web Consortium, 24 June 2003. This version of
the SOAP Version 1.2 Part 1: Messaging Framework Recommendation is
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/. The latest version of SOAP Version 1.2
Part 1: Messaging Framework is available at http://www.w3.org/TR/soap12-part1/.

[SecSpecMaintWG]
XML Security Specifications Maintenance Working Group , See http://www.w3.org/2007/xmlsec.

[WS-Addressing Core]
Web Services Addressing 1.0 - Core, M. Gudgin, M. Hadley, and T. Rogers, Editors. World Wide
Web Consortium, 9 May 2006. This version of the Web Services Addressing 1.0 - Core Recommen-
dation is http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/. The latest version of Web
Services Addressing 1.0 - Core is available at http://www.w3.org/TR/ws-addr-core.

[WS-Addressing Metadata]
Web Services Addressing 1.0 - Metadata, M. Gudgin, M. Hadley, T. Rogers and Ü. Yalçinalp,
Editors. World Wide Web Consortium, 16 May 2007. This version of the Web Services Addressing
1.0 - Metadata is http://www.w3.org/TR/2007/WD-ws-addr-metadata-20070516/. The latest version
of Web Services Addressing 1.0 - Metadata is available at http://www.w3.org/TR/ws-addr-metadata.

[Web Services Atomic Transaction]
Web Services Atomic Transaction, L. P. Cabrera, et al, Authors. Arjuna Technologies, Inc., BEA
Systems, Inc., Hitachi Software, Inc., IONA Technologies, Inc., International Business Machines
Corporation, and Microsoft Corporation, February 2005. Available at
http://schemas.xmlsoap.org/ws/2004/10/wsat/.

[Web Services Business Activity Framework]
Web Services Business Activity Framework, L. P. Cabrera, et al, Authors. Arjuna Technologies, Inc.,
BEA Systems, Inc., Hitachi Software, Inc., IONA Technologies, Inc., International Business
Machines Corporation, and Microsoft Corporation, February 2005. Available at
http://schemas.xmlsoap.org/ws/2004/10/wsba/.

[Devices Profile for Web Services]
Devices Profile for Web Services, S. Chan, et al, Authors. Intel Corporation, Lexmark, Inc., Microsoft
Corporation, and Richo Software, Inc., February 2006. Available at
http://schemas.xmlsoap.org/ws/2006/02/devprof/.

43

C. References

http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soap12-mtom/
http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserialization/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/2007/xmlsec
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/2007/WD-ws-addr-metadata-20070516/
http://www.w3.org/TR/ws-addr-metadata
http://www.w3.org/TR/ws-addr-metadata
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsba/
http://schemas.xmlsoap.org/ws/2006/02/devprof/

[WS-MetadataExchange]
Web Services Metadata Exchange (WS-MetadataExchange), K. Ballinger, et al, Authors. BEA
Systems Inc., Computer Associates International, Inc., International Business Machines Corporation,
Microsoft Corporation, Inc., SAP AG, Sun Microsystems, and webMethods, August 2006. Available
at http://schemas.xmlsoap.org/ws/2004/09/mex/

[Web Services Policy Framework]
Web Services Policy 1.5 - Framework, A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yend-
luri, T. Boubez and Ü. Yalçinalp, Editors. World Wide Web Consortium, 05, June 2007. This version
of the Web Services Policy 1.5 - Framework specification is at http://www.w3.org/TR/ws-policy/.
The latest version of Web Services Policy 1.5 - Framework is available at
http://www.w3.org/TR/ws-policy/.

[Web Services Policy Attachment]
Web Services Policy 1.5 - Attachment, A. S. Vedamuthu, D. Orchard, F. Hirsch, M. Hondo, P. Yend-
luri, T. Boubez and Ü. Yalçinalp, Editors. World Wide Web Consortium, 05, June 2007. This version
of the Web Services Policy 1.5 - Attachment specification is at
http://www.w3.org/TR/ws-policy-attach. The latest version of Web Services Policy 1.5 - Attachment
is available at http://www.w3.org/TR/ws-policy-attach/.

[Web Services Reliable Messaging Policy]
Web Services Reliable Messaging Policy Assertion (WS-RM Policy), D. David, A. Kamarkar, G. Pilz,
and Ü. Yalçinalp, Editors. Organization for the Advancement of Structured Information Standards,
24 April 2006. Available at
http://docs.oasis-open.org/ws-rx/wsrmp/200608/wsrmp-1.1-rddl-200608.html

[WSDL 1.1]
Web Services Description Language (WSDL) 1.1, E. Christensen, et al, Authors. World Wide Web
Consortium, March 2001. Available at http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[WSDL 2.0 Core Language]
Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language, R. Chinnici, J. J.
Moreau, A. Ryman, S. Weerawarana, Editors. World Wide Web Consortium, 27 March 2006. This
version of the WSDL 2.0 specification is http://www.w3.org/TR/2006/CR-wsdl20-20060327. The
latest version of WSDL 2.0 is available at http://www.w3.org/TR/wsdl20.

[WS-Security 2004]
Web Services Security: SOAP Message Security 1.0, A. Nadalin, C. Kaler, P. Hallam-Baker and R.
Monzillo, Editors. Organization for the Advancement of Structured Information Standards, March
2004. Available at http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-secu-
rity-1.0.pdf.

[WS-SecurityPolicy]
WS-SecurityPolicy v1.0, A. Nadalin, M. Gudgin, A. Barbir, and H. Granqvist, Editors. Organization
for the Advancement of Structured Information Standards, 8 December 2005. Available at
http://www.oasis-open.org/committees/download.php/15979/oasis-wssx-ws-securitypolicy-1.0.pdf.

[WS-Trust]
Web Services Trust Language (WS-Trust), S. Anderson, et al, Authors. Actional Corporation, BEA
Systems, Inc., Computer Associates International, Inc., International Business Machines Corporation,
Layer 7 Technologies, Microsoft Corporation, Oblix Inc., OpenNetwork Technologies Inc., Ping
Identity Corporation, Reactivity Inc., RSA Security Inc., and VeriSign Inc., February 2005. Available
at http://schemas.xmlsoap.org/ws/2005/02/trust.

44

C. References

http://schemas.xmlsoap.org/ws/2004/09/mex/
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/TR/ws-policy-attach/
http://docs.oasis-open.org/ws-rx/wsrmp/200608/wsrmp-1.1-rddl-200608.html
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2006/CR-wsdl20-20060327/
http://www.w3.org/TR/wsdl20/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
http://schemas.xmlsoap.org/ws/2005/02/trust

[XML ID]
xml:id Version 1.0, J. Marsh, D. Veillard and N. Walsh, Editors. World Wide Web Consortium, 9
September 2005. This version of the xml:id Version 1.0 Recommendation is
http://www.w3.org/TR/2005/REC-xml-id-20050909/. The latest version of xml:id Version 1.0 is
available at http://www.w3.org/TR/xml-id/.

[XMLID11]
Canonical XML 1.1, This is a work in progress. J. Boyer and G. Marcy Authors. W3C Working
Draft, 20 December 2006. Available at http://www.w3.org/TR/xml-c14n11/.

[XOP]
XML-binary Optimized Packaging, M. Gudgin, N. Mendelsohn, M. Nottingham and H. Ruellan,
Editors. World Wide Web Consortium, 25 January 2005. This version of the XML-binary Optimized
Packaging Recommendation is http://www.w3.org/TR/2005/REC-xop10-20050125/. The latest
version of XML-binary Optimized Packaging is available at http://www.w3.org/TR/xop10/.

D. Acknowledgements (Non-Normative)
This document is the work of the W3C Web Services Policy Working Group.

Members of the Working Group are (at the time of writing, and by alphabetical order): Dimitar Angelov
(SAP AG), Abbie Barbir (Nortel Networks), Charlton Barreto (Adobe Systems Inc.), Sergey Beryozkin
(IONA Technologies, Inc.), Vladislav Bezrukov (SAP AG), Toufic Boubez (Layer 7 Technologies),
Symon Chang (BEA Systems, Inc.), Paul Cotton (Microsoft Corporation), Glen Daniels (Sonic Software),
Doug Davis (IBM Corporation), Jacques Durand (Fujitsu Limited), Ruchith Fernando (WSO2), Christo-
pher Ferris (IBM Corporation), William Henry (IONA Technologies, Inc.), Frederick Hirsch (Nokia),
Maryann Hondo (IBM Corporation), Ondrej Hrebicek (Microsoft Corporation), Steve Jones (Layer 7
Technologies), Tom Jordahl (Adobe Systems Inc.), Paul Knight (Nortel Networks), Philippe Le Hégaret
(W3C/MIT), Mark Little (JBoss Inc.), Mohammad Makarechian (Microsoft Corporation), Ashok Malhotra
(Oracle Corporation), Jonathan Marsh (WSO2), Monica Martin (Sun Microsystems, Inc.), Arnaud
Meyniel (Axway Software), Jeff Mischkinsky (Oracle Corporation), Dale Moberg (Axway Software),
Anthony Nadalin (IBM Corporation), David Orchard (BEA Systems, Inc.), Sanjay Patil (SAP AG),
Manjula Peiris (WSO2), Fabian Ritzmann (Sun Microsystems, Inc.), Daniel Roth (Microsoft Corporation),
Tom Rutt (Fujitsu Limited), Sanka Samaranayake (WSO2), Felix Sasaki (W3C/Keio), Skip Snow (Citi-
group), Yakov Sverdlov (CA), Mark Temple-Raston (Citigroup), Asir Vedamuthu (Microsoft Corpora-
tion), Sanjiva Weerawarana (WSO2), Ümit Yalçinalp (SAP AG), Prasad Yendluri (webMethods, Inc.).

Previous members of the Working Group were: Jeffrey Crump, Jong Lee, Bob Natale, Eugene Osovetsky,
Bijan Parsia, Seumas Soltysik.

The people who have contributed to discussions on public-ws-policy@w3.org are also gratefully acknowl-
edged.

E. Changes in this Version of the Document (Non-Normative)
A list of major editorial changes since the Working Draft dated 30 March, 2007 is below:

45

D. Acknowledgements (Non-Normative)

http://www.w3.org/TR/2005/REC-xml-id-20050909/
http://www.w3.org/TR/xml-id/
http://www.w3.org/TR/xml-c14n11/
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.w3.org/TR/xop10/
http://www.w3.org/TR/xop10/
http://www.w3.org/2002/ws/policy/
http://lists.w3.org/Archives/Public/public-ws-policy/

Editorial changes to align with the OASIS WS-SecurityPolicy specification.

Editorial changes to align with the W3C WS-Addressing Metadata specification.

F. Web Services Policy 1.5 - Primer Change Log (Non-Norma-
tive)

Date Author Description

20060816 ASV
Created first draft per action item 2 from the Austin F2F. This draft is based on a
contribution from Microsoft.

20060829 ASV Implemented the resolution for issue 3561: replaced URI with IRI.

20060919 DBO Implemented the action 26 to add versioning material to primer.

20060924 TIB
Implemented the editorial action 35 to move the Security Considerations section to
the Framework document.

20060924 TIB
Implemented the editorial action 36 to insert a reference to the Security Considera-
tions section from the Framework document.

20060926 PY Made a first pass at the changes to address issues reported by Paul Cotton.

20060928 PY
Completed making remaining changes to address issues reported by Paul Cotton.
Fixing up the Acknowledgements is pending

20061020 PY Implemented resolution for Issue 3827. Editors Action Item 56.

20061027 TIB Implemented resolution for Issue 3815. Editors Action Item 55.

20061101 TIB Implemented resolution for Issue 3815. Editors Action Item 68.

20061101 PY Implemented the resolution for Issue 3791. Editors Action Item 67.

20061121 ASV Implemented the resolution for issue 3809. Editors Action Item 79.

20061121 ASV Implemented the resolution for issue 3966. Editors Action Item 81.

20061125 ASV Reset Section E. Changes in this Version of the Document [p.45] .

20061125 ASV

Implemented the resolution for issue 3792. Editors Action Item 80: moved Sections
4.2 Parts of a Policy Assertion and 4.4.8 Versioning Policy Language into Section
3. Advanced Concepts: Policy Expression [p.17] ; moved Section 4 Advanced
Concepts II: Policy Assertion Design into the Guidelines document.

20061127 ASV Added Frederick and Umit to the list of editors. Editors’ action 86.

20061207 FJH
Implemented the resolution for issue 3952 as outlined (with editorial correction
replacing "for as" with "as"), Editors’ action 92.

46

F. Web Services Policy 1.5 - Primer Change Log (Non-Normative)

http://www.w3.org/2006/07/12-ws-policy-minutes.html#action02
http://lists.w3.org/Archives/Public/public-ws-policy/2006Jul/0001.html
http://www.w3.org/2006/08/23-ws-policy-minutes.html#action06
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3561
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/26
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/35
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/36
http://lists.w3.org/Archives/Public/public-ws-policy/2006Sep/0165.html
http://lists.w3.org/Archives/Public/public-ws-policy/2006Sep/0165.html
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3827
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/56
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3815
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/55
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3795
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/68
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3791
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/67
http://lists.w3.org/Archives/Public/public-ws-policy/2006Oct/0216.html
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3809
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/79
http://www.w3.org/2006/11/15-ws-policy-minutes.html#item08
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3966
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/81
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3792#c2
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3792
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/80
http://www.w3.org/TR/2006/WD-ws-policy-primer-20061018/#parts-of-a-policy-assertion
http://www.w3.org/TR/2006/WD-ws-policy-primer-20061018/#versioning-policy-language
http://www.w3.org/TR/2006/WD-ws-policy-primer-20061018/#advanced-concepts-2-policy-assertion-design
http://www.w3.org/TR/2006/WD-ws-policy-primer-20061018/#advanced-concepts-2-policy-assertion-design
http://lists.w3.org/Archives/Public/public-ws-policy-eds/2006Nov/0033.html
http://lists.w3.org/Archives/Public/public-ws-policy-eds/2006Nov/0054.html
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/86
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3952
http://lists.w3.org/Archives/Public/public-ws-policy/2006Dec/0018.html
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/92

20061213 TIB Implemented the resolution for issue 3965 as outlined. Editors’ action 94.

20070104 MH Implemented the resolution for issue 4069 as outlined. Editors’ action 110.

20070108 ASV Reset Section E. Changes in this Version of the Document [p.45] .

20070118 FJH
Implemented the resolution for issue 4041 resolution corresponding to Editors’
action 143.

20070122 PY Completed action item: 118 Resolution for issue 4141

20070122 PY Completed action item: 127 Resolution for issue 4197

20070131 FJH
Implemented resolution for issue 4270 as Resolved on 31 January 2007, closing
editors action 151.

20070313 FJH
Applied resolution to issue 4379 with minor editorial revision (editors action 181).
Updated references order.

20070314 FJH Applied resolution to issue 4263 (editors action 195).

20070315 PY Applied the resolution to issue 4339 (editors action 194).

20070315 PY Applied the resolution to issue 4262 (editors action 201).

20070315 FJH Applied resolution to issue 4255 (editors action 192).

20070315 ASV Implemented the resolution for issue 4288. Editors’ action 196.

20070315 ASV Implemented the resolution for issue 3979. Editors’ action 198.

20070315 FJH Applied resolution to issue 4253 (editors action 191).

20070319 MH Implemented the resolution for issue 4213 as outlined. Editors’ action 189.

20070319 PY Implemented the resolution for issue 4103 as outlined. Editors’ action 193.

20070320 ASV Implemented the resolution for issue 4300. Editors’ action 190.

20070321 ASV Updated section E. Changes in this Version of the Document [p.45] .

20070321 ASV
Formatted the example in 3.8.3 Use of Ignorable attribute and an alternative
Versioning Scenario [p.32] .

20070322 ASV

Deleted residual text in 4. Versioning Policy Language [p.36] ; s/The possi-
ble extensibility points with their current extensibil-
ity - including some outstanding issues related to
extensibility - are:/The possible extensibility points
are:/ ; s/PolicyReference: any attribute and a proposal
to add any element/PolicyReference: any attribute and
any element/ .

47

F. Web Services Policy 1.5 - Primer Change Log (Non-Normative)

http://www.w3.org/Bugs/Public/show_bug.cgi?id=3965
http://lists.w3.org/Archives/Public/public-ws-policy/2006Dec/0016.html
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/94
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4069
http://lists.w3.org/Archives/Public/public-ws-policy/2006Dec/0081.html
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/110
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4041
http://www.w3.org/2007/01/18-ws-policy-irc#T22-09-36
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/143
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/118
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4141
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/127
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4197
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4270
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/151
http://www.w3.org/2007/03/13-ws-policy-irc#T18-27-19
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4379
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/181
http://www.w3.org/2007/03/13-ws-policy-irc#T22-33-55
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4263
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/195
http://www.w3.org/2007/03/13-ws-policy-irc#T22-27-24
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4339
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/194
http://www.w3.org/2007/03/14-ws-policy-irc#T17-29-32
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4262
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/201
http://www.w3.org/2007/03/13-ws-policy-irc#T21-39-50
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4255
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/192
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4288#c4
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4288
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/196
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3979#c1
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3979
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/198
http://www.w3.org/2007/03/13-ws-policy-irc#T21-39-50
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4253
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/191
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4213
http://lists.w3.org/Archives/Public/public-ws-policy/2007Mar/0076.html
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/189
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4103
http://lists.w3.org/Archives/Public/public-ws-policy/2007Feb/0033.html
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/193
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4300#c1
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4300
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/190

20070426 PY
Editorial changes to align with the OASIS WS-SecurityPolicy specification. For
issue 4318. Editors’ action 244.

20070430 TIB Editorial changes for issue 4393. Editors’ action 239.

20070501 ASV Reset Section E. Changes in this Version of the Document [p.45] .

20070502 TIB Further changes for issue 4393. Editors’ action 239.

20070502 DBO Finished changes for issue 4414. Editors’ action 239.

20070524 DBO
Finished changes for issue 4559. Editors’ action 281, and issue 4375. Editors’
action 282

48

F. Web Services Policy 1.5 - Primer Change Log (Non-Normative)

http://www.w3.org/Bugs/Public/show_bug.cgi?id=4318
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/244
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4393
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/239
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4393
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/239
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4414
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/239
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4559
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/281
http://www.w3.org/Bugs/Public/show_bug.cgi?id=4376
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/282

	Web Services Policy 1.5 - Primer
	W3C Working Draft 05 June 2007
	Abstract
	Status of this Document
	Table of Contents
	Appendices

	1. Introduction
	2. Basic Concepts: Policy Expression
	2.1 Web Services Policy
	2.2 Simple Message
	2.3 Secure Message
	2.4 Other Assertions
	2.5 Combining Policy Assertions
	2.6 Optional Policy Assertion
	2.7 Ignorable Policy Expressions
	2.8 Marking Assertions both Optional and Ignorable
	2.9 Nested Policy Expressions
	2.10 Referencing Policy Expressions
	2.11 Attaching Policy Expressions to WSDL
	2.12 Policy Automates Web Services Interaction

	3. Advanced Concepts: Policy Expression
	3.1 Policy Expression
	3.2 Normal Form for Policy Expressions
	3.3 Policy Data Model
	3.4 Compatible Policies
	3.4.1 Strict and Lax Policy Intersection

	3.5 Attaching Policy Expressions to WSDL
	3.6 Policy Retrieval
	3.7 Combine Policies
	3.8 Extensibility and Versioning
	3.8.1 Policy Language
	3.8.2 Policy Expressions
	3.8.3 Use of Ignorable attribute and an alternative Versioning Scenario
	3.8.4 Use of Ignorable and Optional attributes

	3.9 Parts of a Policy Assertion

	4. Versioning Policy Language
	4.1 Policy Framework
	4.2 Policy Attachment

	5. Conclusion
	A. Security Considerations
	B. XML Namespaces
	C. References
	D. Acknowledgements †Non-Normative‡
	E. Changes in this Version of the Document †Non-Normative‡
	F. Web Services Policy 1.5 - Primer Change Log †Non-Normative‡

